在之前的分析中,通过傅里叶级数可以将周期信号展开为一系列“加权”正弦信号的叠加,而对傅里叶级数展开各个频率分量的系数 C n C_n Cn,通过将周期信号的周期趋近无穷大,进而得到了非周期信号的傅里叶变换 F ( j ω ) F(j\omega) F(jω)。
那么傅里叶变换是否可以用于周期信号呢?这样便可以将信号的分析方式统一起来,下面将对这个问题进行分析。
1. 如何得到周期信号的傅里叶变换?
首先,在求解非周期信号的傅里叶变换时,通过对周期信号的傅里叶级数的展开系数 C n C_n Cn进行分析和求解,进而得到非周期信号的傅里叶变换 F ( j ω ) F(j\omega) F(jω)。而周期信号的傅里叶变换则是通过对傅里叶级数展开式 f ( t ) = ∑ n = − ∞ + ∞ C n ⋅ e j n Ω t f(t)=\sum_{n=-\infty}^{+\infty}C_n\cdot e^{jn\Omega t} f(t)=∑n=−∞+∞Cn⋅ejnΩt两边同时求傅里叶变换得到。如何理解这样的求解方式呢?
在分析和求解周期信号的傅里叶变换之前,首先应了解下述两个问题:
- 周期信号和非周期信号的相对性:傅里叶变换的由来是通过将周期信号的周期趋于无穷大而得到的,也就是说,周期和非周期信号可以理解为一个有限周期的周期信号和一个无限周期的周期信号。因此,非周期信号也可以看做是一种特殊的周期信号,反过来说,非周期信号也可以说是一种特殊的周期信号。因此傅里叶变换实际上也可以应用于对周期信号。这保障了傅里叶变换对周期信号进行变换的合理性
- 回顾Direchlet的第一个条件:信号要在单个周期内或一段有限的时间范围内绝对可积,即 ∫ t 1 t 2 ∣ f ( t ) ∣ d t < ∞ \int_{t_1}^{t_2}|{f(t)|}dt<\infty ∫t1t2∣f(t)∣dt<∞。傅里叶级数的求和范围是单个周期T或有限的时间区间 [ t 1 , t 2 ] [t_1, t_2] [t1,t2],并且通过傅里叶级数将信号展开为谐波分量进行研究,而傅里叶变换是的积分范围是从 [ − ∞ , + ∞ ] [-\infty, +\infty] [−∞,+∞],因此无法对周期信号进行傅里叶变换,不具备可行性。
为了解决上述的第二个问题,这里引入两个措施:
-
傅里叶变换具备一个重要性质:线性特性
- 线性特性:信号的和的傅里叶变换等于傅里叶变换的和:即: F { A ⋅ f 1 ( t ) + B ⋅ f 2 ( t ) } = A ⋅ F [ f 1 ( t ) ] + B ⋅ F [ f 2 ( t ) ] F\{A\cdot f_1(t)+B\cdot f_2(t)\}=A\cdot F[f_1(t)]+B\cdot F[f_2(t)] F{A⋅f1(t)+B⋅f2(t)}=A⋅F[f1(t)]+B⋅F[f2(t)]
-
复指数信号的傅里叶变换为: F [ e j ω c t ] → 2 π ⋅ δ ( ω − ω c ) F[e^{j\omega_c t} ] \rightarrow2\pi \cdot\delta(\omega-\omega_c) F[ejωct]→2π⋅δ(ω−ωc),冲激函数可以实现将功率信号实现傅里叶变换。
一个满足Direchlet条件的周期信号一定可以展开为傅里叶级数,即:
f
(
t
)
=
∑
n
=
−
∞
+
∞
C
n
⋅
e
j
n
Ω
t
f(t)=\sum_{n=-\infty}^{+\infty}C_n\cdot e^{jn\Omega t}
f(t)=n=−∞∑+∞Cn⋅ejnΩt
其中系数
C
n
=
1
T
∫
−
∞
+
∞
f
(
t
)
⋅
e
−
j
n
Ω
t
d
t
C_n = \frac{1}{T} \int_{-\infty}^{+\infty} f(t)\cdot e^{-jn\Omega t}dt
Cn=T1∫−∞+∞f(t)⋅e−jnΩtdt,
Ω
=
2
π
T
\Omega =\frac{2\pi}{T}
Ω=T2π。
将周期信号看为相对的非周期信号,通过傅里叶变换的线性特性,可以将每一个
e
j
n
Ω
t
e^{jn\Omega t}
ejnΩt求出傅里叶变换并乘以
C
n
C_n
Cn,再叠加,便可得到原周期信号的傅里叶变换,如下:
F
[
f
(
t
)
]
=
∑
n
=
−
∞
+
∞
C
n
⋅
2
π
⋅
δ
(
ω
−
n
Ω
)
F[f(t)]=\sum_{n=-\infty}^{+\infty}C_n\cdot 2\pi \cdot \delta(\omega-n\Omega)
F[f(t)]=n=−∞∑+∞Cn⋅2π⋅δ(ω−nΩ)
上式即周期函数的傅里叶变换。
通过上式可知:
- 周期信号的傅里叶变换是一系列间隔均匀的冲激序列。
- 幅度频谱仅出现在频域 ω = n Ω \omega =n\Omega ω=nΩ的点上.
- 幅度的大小和信号对应傅里叶级数展开的系数 C n C_n Cn成正比,即 2 π ⋅ C n 2\pi \cdot C_n 2π⋅Cn。
所以,如果可以得到一个周期函数的额傅里叶级数展开式,那么这个周期函数的傅里叶变换,就是将原傅里叶级数展开频谱图上各个分量幅值乘以 2 π 2\pi 2π。
问题:傅里叶级数和傅里叶变换对周期信号的分析有什么区别?
首先列出傅里叶级数和傅里叶变换的形式:
周期信号的傅里叶级数 | 周期信号的傅里叶变换 |
---|---|
f ( t ) = ∑ n = − ∞ + ∞ [ C n ⋅ e j ( n Ω t ) ] f(t)=\sum_{n=-\infty}^{+\infty}[C_n\cdot e^{j(n\Omega t)}] f(t)=∑n=−∞+∞[Cn⋅ej(nΩt)] | F [ f ( t ) ] = ∑ n = − ∞ + ∞ C n ⋅ 2 π ⋅ δ ( ω − n Ω ) F[f(t)]=\sum_{n=-\infty}^{+\infty}C_n\cdot 2\pi \cdot \delta(\omega-n\Omega) F[f(t)]=∑n=−∞+∞Cn⋅2π⋅δ(ω−nΩ) |
C n = 1 T ∫ t 1 t 2 f ( t ) e − j n Ω t d t C_n = \frac{1}{T}\int_{t_1}^{t_2}f(t)e^{-jn\Omega t}dt Cn=T1∫t1t2f(t)e−jnΩtdt | C n = 1 T ∫ t 1 t 2 f ( t ) e − j n Ω t d t C_n = \frac{1}{T}\int_{t_1}^{t_2}f(t)e^{-jn\Omega t}dt Cn=T1∫t1t2f(t)e−jnΩtdt |
幅度频谱中各个分量的幅值为 C n C_n Cn | 幅度频谱中各个分量的幅值为 2 π ⋅ C n 2\pi \cdot C_n 2π⋅Cn |
观察上式,我认为主要区别如下:
-
变换前后信号的域不同:
- 周期信号的傅里叶级数是对周期性信号在时域的正交分解,所以傅里叶级数是一种时域到时域的分解,因此傅里叶级数本身并没有发生域的转化。
- 周期信号的傅里叶变换是对周期性信号表达方式的一种转化,将时域中信号的信息,反映在频域中。所以,周期性信号的傅里叶变换是一种时域到频域的转化。
-
分析的重点不同:
- 周期信号的傅里叶级数展开本质上是将一个信号通过正交函数集进行表示,表示的方式是利用线系统的叠加性和齐次性,对组成信号的子信号进行加权和叠加。而其系数 C n C_n Cn关于 n Ω n\Omega nΩ的关系才是频域。因此傅里叶级数展开和傅里叶级数展开的频谱是两个概念。这里分析的重点是”展开“,而频谱只是对这种展开的一种表现形式,因为它可以很好体现展开式中的分量幅值、相位等信息。
- 而周期信号的傅里叶变换本质上是构成信号的分量的幅值关于频率的函数,这对应于傅里叶级数中 C n C_n Cn关于 n Ω n\Omega nΩ的关系。因此,周期信号的傅里叶变换,分析的重点是”变换“,即通过频域来体现一个信号的特点。
-
频谱上的幅值不同:
- 周期信号的傅里叶级数,信号的各个频率分量出现在 n Ω n\Omega nΩ的点上,其各个频率分量的幅值为傅里叶级数展开的系数 C n C_n Cn
- 周期信号的傅里叶变换,信号的各个频率分量出现在 n Ω n\Omega nΩ的点上,但其各个频率分量的幅值为傅里叶级数展开的系数 C n C_n Cn的 2 π 2\pi 2π倍,即 2 π ⋅ C n 2\pi \cdot C_n 2π⋅Cn。
问题:周期信号的傅里叶变换、非周期信号的傅里叶变换,傅里叶级数有什么联系和区别?
-
两者都是信号的各个频率分量幅值在频率上的体现。
-
非周期信号的傅里叶变换是通过对周期信号的傅里叶级数展开的系数 C n C_n Cn进行分析和变化得到的。而周期信号的傅里叶变换,由于无法对 T T T取极限通过 C n C_n Cn求得,所以利用了傅里叶变换的线性性质,对傅里叶级数两边同时求傅里叶变换而得到的。
-
周期信号的傅里叶级数的频谱是离散频谱,在除 n Ω n\Omega nΩ之外的部分没有意义,而周期信号的傅里叶变换是连续频谱,在 n Ω n\Omega nΩ上的频率有幅值,而在除 n Ω n\Omega nΩ之外的部分为0,有意义。
问题:如何理解”对 f ( t ) f(t) f(t)进行傅里叶级数展开,或对 f ( t ) f(t) f(t)进行傅里叶变换“这句话?
- f ( t ) f(t) f(t)进行傅里叶级数展开,是将 f ( t ) f(t) f(t)用一系列正交函数(正弦函数)进行表示。
- f ( t ) f(t) f(t)进行傅里叶变换,是体现构成 f ( t ) f(t) f(t)的各个频率分量的幅值在关于频率的关系,可以理解为特定条件和极限下的傅里叶级数展开系数的”变体“。
2. 周期延拓的信号的傅里叶变换
其实,周期延拓的信号的傅里叶变换,和周期信号的傅里叶变换是一样的,如果原非周期函数为
f
(
t
)
f(t)
f(t),经过周期为
T
T
T的周期延拓,变为
f
T
(
t
)
f_T(t)
fT(t),如果没有发生重叠的话,
f
T
(
t
)
f_T(t)
fT(t)傅里叶变换为:
f
T
(
t
)
=
∑
n
−
∞
+
∞
C
n
⋅
e
j
n
Ω
t
→
2
π
∑
n
−
∞
+
∞
[
C
n
⋅
δ
(
ω
−
n
Ω
)
]
\begin{aligned} &f_T(t)=\sum_{n-\infty}^{+\infty}C_n \cdot e^{jn\Omega t} \\&\rightarrow 2\pi \sum_{n-\infty}^{+\infty}[C_n\cdot \delta(\omega-n\Omega )] \end{aligned}
fT(t)=n−∞∑+∞Cn⋅ejnΩt→2πn−∞∑+∞[Cn⋅δ(ω−nΩ)]
问题:周期延拓后的 f T ( t ) f_T(t) fT(t)的傅里叶变换和原信号 f ( t ) f(t) f(t)的傅里叶变换有什么关系?
通过对系数
C
n
C_n
Cn进行计算,如下:
C
n
=
1
T
∫
−
T
2
+
T
2
f
T
(
t
)
⋅
e
−
j
n
Ω
t
d
t
=
1
T
∫
−
∞
+
∞
f
(
t
)
⋅
e
−
j
n
Ω
t
d
t
=
F
(
j
n
Ω
)
T
\begin{aligned} C_n &= \frac{1}{T}\int_{-\frac{T}{2}}^{+\frac{T}{2}}f_T(t)\cdot e^{-jn\Omega t}dt \\&= \frac{1}{T}\int_{-\infty}^{+\infty}f(t)\cdot e^{-jn\Omega t}dt \\&=\frac{F(jn\Omega)}{T} \end{aligned}
Cn=T1∫−2T+2TfT(t)⋅e−jnΩtdt=T1∫−∞+∞f(t)⋅e−jnΩtdt=TF(jnΩ)
所以:
f
T
(
t
)
=
∑
n
−
∞
+
∞
C
n
⋅
e
j
n
Ω
t
→
2
π
∑
n
−
∞
+
∞
[
C
n
⋅
δ
(
ω
−
n
Ω
)
]
→
2
π
T
∑
n
−
∞
+
∞
[
F
(
j
n
Ω
)
⋅
δ
(
ω
−
n
Ω
)
]
→
Ω
∑
n
−
∞
+
∞
[
F
(
j
n
Ω
)
⋅
δ
(
ω
−
n
Ω
)
]
\begin{aligned} &f_T(t)=\sum_{n-\infty}^{+\infty}C_n \cdot e^{jn\Omega t} \\&\rightarrow 2\pi \sum_{n-\infty}^{+\infty}[C_n\cdot \delta(\omega-n\Omega )] \\&\rightarrow \frac{2\pi}{T} \sum_{n-\infty}^{+\infty}[F(jn\Omega)\cdot \delta(\omega-n\Omega )] \\&\rightarrow \Omega \sum_{n-\infty}^{+\infty}[F(jn\Omega)\cdot \delta(\omega-n\Omega )] \end{aligned}
fT(t)=n−∞∑+∞Cn⋅ejnΩt→2πn−∞∑+∞[Cn⋅δ(ω−nΩ)]→T2πn−∞∑+∞[F(jnΩ)⋅δ(ω−nΩ)]→Ωn−∞∑+∞[F(jnΩ)⋅δ(ω−nΩ)]
也就是说,周期化的信号的傅里叶变换,是原信号的频谱的幅值乘以
Ω
\Omega
Ω,即
F
(
j
n
Ω
)
⋅
Ω
F(jn\Omega)\cdot \Omega
F(jnΩ)⋅Ω,再以
n
Ω
n\Omega
nΩ等间距对原信号频谱进行取样,如下图所示:

3. 傅里叶级数,周期信号的傅里叶变换,非周期信号的傅里叶变换的求法
通过上述分析可知:
- 非周期信号的傅里叶变换 – 直接计算或者查找傅里叶变换表得到 F ( j ω ) F(j\omega) F(jω)
- 周期信号的傅里叶变换 – 看为非周期信号 f ( t ) f(t) f(t)的延拓 f T ( t ) f_T(t) fT(t),通过 F [ f T ( t ) ] → Ω ∑ n − ∞ + ∞ [ F ( j n Ω ) ⋅ δ ( ω − n Ω ) ] F[f_T(t)]\rightarrow \Omega \sum_{n-\infty}^{+\infty}[F(jn\Omega)\cdot \delta(\omega-n\Omega )] F[fT(t)]→Ω∑n−∞+∞[F(jnΩ)⋅δ(ω−nΩ)]求得,其中 F ( j n Ω ) F(jn\Omega) F(jnΩ)为非周期信号 f ( t ) f(t) f(t)的傅里叶变换,并且在 n Ω n\Omega nΩ取值。
- 利用 C n = F ( j n Ω ) T C_n =\frac{F(jn\Omega)}{T} Cn=TF(jnΩ)求得周期信号的傅里叶级数。
所以,只需要知道非周期信号的傅里叶变换,便可以求得周期信号的傅里叶变换和傅里叶级数展开。
傅里叶变换和傅里叶级数的主要内容至此已经完成,下一部分将简略说明傅里叶变换的性质。感谢阅读,如有不当之处,欢迎批评指正!