Path(0)贝塞尔曲线

声明:本文摘自其它参考资料之内容,会在文末声明,绝无冒犯之意,只为一时复习之方便,侵权必删!

(最近在vrep中总遇到贝塞尔曲线,做个简单的记录。不过贝塞尔曲线在机器人的轨迹规划里应该也用得到,以后需要了再查找相关资料应用一下)

贝塞尔曲线是依据任意位置的点坐标绘制出的一条光滑曲线。其设计思路是按照规律u从0到1的移动过程中,在各个控制点连线的相应位置取点,并对相邻两条线上的点再次连线,重复以上过程直到没有可连接的两个点。

以下是两篇读到的比较好的:

1.贝塞尔曲线扫盲 - 随便写写 - 前端乱炖 http://www.html-js.com/article/1628

2.cubic-bezier贝塞尔曲线CSS3动画工具 - 轩枫阁 – 前端开发 | web前端技术博客
  https://www.xuanfengge.com/cubic-bezier-bezier-css3-animation-tools.html

3.这是一个可以在线编辑贝塞尔曲线的网站,在这个上面可以任意指定点(最多七个),然后它就会自动模拟出相应阶数的贝塞尔曲线:

Bézier Curve (de Casteljau algorithm)

http://myst729.github.io/bezier-curve/



4.贝塞尔曲线在路径规划中的应用[1]


    路径只包含几何信息:对于一个三维空间中的光滑路径,我们能计算这条路径上每一点处的切线和法线,它们刚好能唯一地确定一个右手直角坐标系(这个坐标系又被称为 Frenet 标架),如下图所示。对应的代码如下。大家都知道,平面上的曲线可以用曲率描述它的弯曲程度,可是要描述三维空间曲线的弯曲程度还需要一个量,叫挠率,它是描述扭曲程度的。如果把Frenet 标架想象成过山车,你坐在上面就能更直观地感受曲率和挠率的含义。

 

参考:

1.基于Mathematica的机器人仿真环境(机械臂篇) - CSDN博客
https://blog.csdn.net/robinvista/article/details/70231205

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值