前言
Apollo中用到了PID、MPC和LQR三种控制器,其中,MPC和LQR控制器在状态方程的形式、状态变量的形式、目标函数的形式等有诸多相似之处,因此结合自己目前了解到的信息,将两者进行一定的比较。
MPC( Model predictive control, 模型预测控制 ) 和 LQR( Linear–quadratic regulator,线性二次调解器 ) 在状态方程、控制实现等方面,有很多相似之处,但也有很多不同之处,如工作时域、最优解等,基于各自的理论基础,从研究对象、状态方程、目标函数、求解方法等方面, 对MPC和LQR做简要对比分析。对MPC的详细讲解请参考我的上一篇博文:Apollo代码学习(六)—模型预测控制(MPC)
本文主要参考内容:
【1】龚建伟, 姜岩, 徐威. 无人驾驶车辆模型预测控制[M]. 北京理工大学出版社, 2014.
【2】Model predictive control-Wikipedia
【3】Linear–quadratic regulator-Wikipedia
【4】Inverted Pendulum: State-Space Methods for Controller Design
【5】王金城. 现代控制理论[M]. 化学工业出版社, 2007.
研究对象
LQR的研究对象是现代控制理论中以状态空间方程形式给出的线性系统。MPC的研究对象可以是线性系统,也可以是非线性系统,只不过为了某些需求,如时效性,计算的便捷,操控性等,一般会将非线性系统转换为线性系统进行计算。非线性系统的线性化可参考上一篇文章。
Apollo中,LQR和MPC控制器都选用的单车动力学模型作为研究对象,单车动力学模型为非线性系统,但LQR和MPC控制器的目的是为了求最优控制解,在具体的优化求解时,均通过线性化方法将状态方程转化为线性方程进行求解,所以,可以说apollo中LQR和MPC控制器的研究对象均为线性系统。
状态方程
LQR的状态方程多以微分方程的形式给出,如:
x
˙
=
A
x
+
B
u
(1)
\dot{x}=Ax+Bu \tag{1}
x˙=Ax+Bu(1)
是一个连续线性系统,在计算过程中需要转换为如公式3的离散线性系统。
MPC的状态方程可以为线性系统,可以为非线性系统,非线性系统形如下:
ξ
˙
=
f
(
ξ
,
u
)
(2)
\dot{\xi}=f(\xi,u) \tag{2}
ξ˙=f(ξ,u)(2)
线性系统如公式3所示:
x
(
t
+
1
)
=
A
x
(
t
)
+
B
u
(
t
)
(3)
x(t+1)=Ax(t)+Bu(t) \tag{3}
x(t+1)=Ax(t)+Bu(t)(3)
但LQR和MPC在计算求解时基本都是基于离散线性方程计算的。公式1可以很方便的转化为公式2的形式。离散化的方法可参考上一篇文章:Apollo代码学习(六)—模型预测控制(MPC)
工作时域
按照维基百科的说法:
The main differences between MPC and LQR are that LQR optimizes in a fixed time window (horizon) whereas MPC optimizes in a receding time window, and that a new solution is computed often whereas LQR uses the single (optimal) solution for the whole time horizon.
LQR在一个固定的时域上求解,且一个时域内只有一个最优解,而MPC在一个逐渐消减的时域内( in a receding time window )求解最优解,且最优解经常更新。
可以结合MPC的滚动优化,以及图1进行理解:
针对同一工作时域
[
t
,
t
+
N
]
[t, t+N]
[t,t+N],LQR在该时域中,有唯一最优控制解
u
∗
(
t
)
u^*(t)
u∗(t),而MPC仅在
t
t
t时刻有最优解
u
∗
(
t
)
u^*(t)
u∗(t),但它会计算出一个控制序列
U
(
t
)
U(t)
U(t),并仅将序列的第一个值
u
∗
(
t
)
u^*(t)
u∗(t)作为控制量输出给控制系统,然后在下一采样时间结合车辆当前状况求取下一个最优控制解
u
∗
(
t
+
1
)
u^*(t+1)
u∗(t+1),这就是MPC所谓的滚动优化。这么做的目的是为了使控制效果在一定时间内可期,并且能根据控制效果尽早调整控制变量,使实际状态更切合期望状态。
此外,LQR的工作时域可以拓展到无限大,即可以求取无限时域的最优控制解,当然,一般并不会这么用。而MPC只针对有限时域。
目标函数
优化求解问题一般离不开目标函数的设计。
LQR的目标函数的一般形式为:
J
=
1
2
x
T
(
t
f
)
Q
0
(
t
)
x
(
t
f
)
+
1
2
∫
t
0
t
f
[
x
T
Q
x
+
u
t
R
u
]
d
t
(4)
J=\frac{1}{2}x^T(t_f)Q_0(t)x(t_f)+\frac{1}{2}\int_{t0}^{tf}[x^TQx+u^tRu]dt \tag{4}
J=21xT(tf)Q0(t)x(tf)+21∫t0tf[xTQx+utRu]dt(4)
其中,
x
(
t
f
)
x(t_f)
x(tf)为终端状态,
Q
0
(
t
)
Q_0(t)
Q0(t)为正定的终端加权矩阵,
x
x
x为状态变量,多为各种误差,
u
u
u为控制变量,
Q
Q
Q为半正定的状态加权矩阵,
R
R
R为正定的控制加权矩阵,实际应用中,
Q
、
R
Q、R
Q、R多为对角矩阵。
MPC的目标函数的一般形式为:
J
=
x
(
t
+
N
)
T
Q
0
x
(
t
+
N
)
+
∑
i
=
1
N
(
x
(
t
+
i
∣
t
)
T
Q
x
(
t
+
i
∣
t
)
+
u
(
t
+
i
−
1
)
T
R
u
(
t
+
i
−
1
)
)
(5)
J=x(t+N)^TQ_0x(t+N)+\sum_{i=1}^N(x(t+i|t)^TQx(t+i|t)+u(t+i-1)^TRu(t+i-1)) \tag{5}
J=x(t+N)TQ0x(t+N)+i=1∑N(x(t+i∣t)TQx(t+i∣t)+u(t+i−1)TRu(t+i−1))(5)
其中,
x
、
u
、
Q
0
、
Q
、
R
x、u、Q_0、Q、R
x、u、Q0、Q、R的定义同上。
从形式上可以看出,LQR的目标函数和MPC的目标函数其实都是对代价的累计。两者第一部分均为终端代价函数,当系统对终端状态要求极严的情况下才添加,一般情况下可省略。
x
T
Q
x
x^TQx
xTQx项代表跟踪代价,表示跟踪过程中误差的大小,
u
T
R
u
u^TRu
uTRu项代表控制代价,表示对控制的约束或要求等。
求解方法
正如工作时域所述,针对同一工作时域,LQR有唯一最优控制解,也就是在该控制周期内,LQR只进行一次计算。而MPC滚动优化的思想,使其给出该时域内的一组控制序列对应不同的采样时刻(采样周期和控制周期不一定相同),但是只将该序列的第一个值输出给被控系统,作为该时刻的最优控制解。因此,对于工作时域 [ t , t + N ] [t, t+N] [t,t+N],LQR只有唯一解,MPC可能有 N N N个解。
最优控制解的求取多基于目标函数进行,取线性约束下的目标函数的极值为最优控制解。对于系统为线性,目标函数为状态变量和控制变量的二次型函数的线性二次性问题,一般线性二次性问题的最优解具有统一的解析表达式。apollo中的MPC将优化问题转化为二次规划问题,利用二次规划求解器进行求解。横向控制中用的是LQR调节器,它通过假设控制量 u ( t ) u(t) u(t)不受约束,利用变分法求解。
此外,LQR对整个时域进行优化求解,且求解过程中假设控制量不受约束,但是实际情况下,控制量是有约束的。而MPC通常在比整个时域更小的时间窗口中解决优化问题,因此可能获得次优解,且对线性不作任何假设,它能够处理硬约束以及非线性系统偏离其线性化工作点的迁移,这两者都是LQR的缺点。