Apollo代码学习(七)—MPC与LQR比较

4 篇文章 29 订阅

前言

Apollo中用到了PID、MPC和LQR三种控制器,其中,MPC和LQR控制器在状态方程的形式、状态变量的形式、目标函数的形式等有诸多相似之处,因此结合自己目前了解到的信息,将两者进行一定的比较。

MPC( Model predictive control, 模型预测控制 )LQR( Linear–quadratic regulator,线性二次调解器 ) 在状态方程、控制实现等方面,有很多相似之处,但也有很多不同之处,如工作时域、最优解等,基于各自的理论基础,从研究对象、状态方程、目标函数、求解方法等方面, 对MPC和LQR做简要对比分析。对MPC的详细讲解请参考我的上一篇博文:Apollo代码学习(六)—模型预测控制(MPC)

本文主要参考内容:
【1】龚建伟, 姜岩, 徐威. 无人驾驶车辆模型预测控制[M]. 北京理工大学出版社, 2014.
【2】Model predictive control-Wikipedia
【3】Linear–quadratic regulator-Wikipedia
【4】Inverted Pendulum: State-Space Methods for Controller Design
【5】王金城. 现代控制理论[M]. 化学工业出版社, 2007.

研究对象

LQR的研究对象是现代控制理论中以状态空间方程形式给出的线性系统。MPC的研究对象可以是线性系统,也可以是非线性系统,只不过为了某些需求,如时效性,计算的便捷,操控性等,一般会将非线性系统转换为线性系统进行计算。非线性系统的线性化可参考上一篇文章

Apollo中,LQR和MPC控制器都选用的单车动力学模型作为研究对象,单车动力学模型为非线性系统,但LQR和MPC控制器的目的是为了求最优控制解,在具体的优化求解时,均通过线性化方法将状态方程转化为线性方程进行求解,所以,可以说apollo中LQR和MPC控制器的研究对象均为线性系统。

状态方程

LQR的状态方程多以微分方程的形式给出,如:
x ˙ = A x + B u (1) \dot{x}=Ax+Bu \tag{1} x˙=Ax+Bu(1)
是一个连续线性系统,在计算过程中需要转换为如公式3的离散线性系统。
MPC的状态方程可以为线性系统,可以为非线性系统,非线性系统形如下:
ξ ˙ = f ( ξ , u ) (2) \dot{\xi}=f(\xi,u) \tag{2} ξ˙=f(ξ,u)(2)

线性系统如公式3所示:
x ( t + 1 ) = A x ( t ) + B u ( t ) (3) x(t+1)=Ax(t)+Bu(t) \tag{3} x(t+1)=Ax(t)+Bu(t)(3)
但LQR和MPC在计算求解时基本都是基于离散线性方程计算的。公式1可以很方便的转化为公式2的形式。离散化的方法可参考上一篇文章:Apollo代码学习(六)—模型预测控制(MPC)

工作时域

按照维基百科的说法:

The main differences between MPC and LQR are that LQR optimizes in a fixed time window (horizon) whereas MPC optimizes in a receding time window, and that a new solution is computed often whereas LQR uses the single (optimal) solution for the whole time horizon.

LQR在一个固定的时域上求解,且一个时域内只有一个最优解,而MPC在一个逐渐消减的时域内( in a receding time window )求解最优解,且最优解经常更新。
可以结合MPC的滚动优化,以及图1进行理解:

图1 MPC和LQR的工作时域

针对同一工作时域 [ t , t + N ] [t, t+N] [t,t+N],LQR在该时域中,有唯一最优控制解 u ∗ ( t ) u^*(t) u(t),而MPC仅在 t t t时刻有最优解 u ∗ ( t ) u^*(t) u(t),但它会计算出一个控制序列 U ( t ) U(t) U(t),并仅将序列的第一个值 u ∗ ( t ) u^*(t) u(t)作为控制量输出给控制系统,然后在下一采样时间结合车辆当前状况求取下一个最优控制解 u ∗ ( t + 1 ) u^*(t+1) u(t+1),这就是MPC所谓的滚动优化。这么做的目的是为了使控制效果在一定时间内可期,并且能根据控制效果尽早调整控制变量,使实际状态更切合期望状态。
此外,LQR的工作时域可以拓展到无限大,即可以求取无限时域的最优控制解,当然,一般并不会这么用。而MPC只针对有限时域。

目标函数

优化求解问题一般离不开目标函数的设计。
LQR的目标函数的一般形式为:
J = 1 2 x T ( t f ) Q 0 ( t ) x ( t f ) + 1 2 ∫ t 0 t f [ x T Q x + u t R u ] d t (4) J=\frac{1}{2}x^T(t_f)Q_0(t)x(t_f)+\frac{1}{2}\int_{t0}^{tf}[x^TQx+u^tRu]dt \tag{4} J=21xT(tf)Q0(t)x(tf)+21t0tf[xTQx+utRu]dt(4)
其中, x ( t f ) x(t_f) x(tf)为终端状态, Q 0 ( t ) Q_0(t) Q0(t)为正定的终端加权矩阵, x x x为状态变量,多为各种误差, u u u为控制变量, Q Q Q为半正定的状态加权矩阵, R R R为正定的控制加权矩阵,实际应用中, Q 、 R Q、R QR多为对角矩阵。
MPC的目标函数的一般形式为:
J = x ( t + N ) T Q 0 x ( t + N ) + ∑ i = 1 N ( x ( t + i ∣ t ) T Q x ( t + i ∣ t ) + u ( t + i − 1 ) T R u ( t + i − 1 ) ) (5) J=x(t+N)^TQ_0x(t+N)+\sum_{i=1}^N(x(t+i|t)^TQx(t+i|t)+u(t+i-1)^TRu(t+i-1)) \tag{5} J=x(t+N)TQ0x(t+N)+i=1N(x(t+it)TQx(t+it)+u(t+i1)TRu(t+i1))(5)
其中, x 、 u 、 Q 0 、 Q 、 R x、u、Q_0、Q、R xuQ0QR的定义同上。
从形式上可以看出,LQR的目标函数和MPC的目标函数其实都是对代价的累计。两者第一部分均为终端代价函数,当系统对终端状态要求极严的情况下才添加,一般情况下可省略。 x T Q x x^TQx xTQx项代表跟踪代价,表示跟踪过程中误差的大小, u T R u u^TRu uTRu项代表控制代价,表示对控制的约束或要求等。

求解方法

正如工作时域所述,针对同一工作时域,LQR有唯一最优控制解,也就是在该控制周期内,LQR只进行一次计算。而MPC滚动优化的思想,使其给出该时域内的一组控制序列对应不同的采样时刻(采样周期和控制周期不一定相同),但是只将该序列的第一个值输出给被控系统,作为该时刻的最优控制解。因此,对于工作时域 [ t , t + N ] [t, t+N] [t,t+N],LQR只有唯一解,MPC可能有 N N N个解。

最优控制解的求取多基于目标函数进行,取线性约束下的目标函数的极值为最优控制解。对于系统为线性,目标函数为状态变量和控制变量的二次型函数的线性二次性问题,一般线性二次性问题的最优解具有统一的解析表达式。apollo中的MPC将优化问题转化为二次规划问题,利用二次规划求解器进行求解。横向控制中用的是LQR调节器,它通过假设控制量 u ( t ) u(t) u(t)不受约束,利用变分法求解。

此外,LQR对整个时域进行优化求解,且求解过程中假设控制量不受约束,但是实际情况下,控制量是有约束的。而MPC通常在比整个时域更小的时间窗口中解决优化问题,因此可能获得次优解,且对线性不作任何假设,它能够处理硬约束以及非线性系统偏离其线性化工作点的迁移,这两者都是LQR的缺点。

评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值