四轴飞行器基础知识学习笔记(一)— 旋转矩阵与欧拉角的关系

本文介绍了四轴飞行器的基础知识,主要探讨了旋转矩阵与欧拉角的关系。通过二维平面和三维坐标系的旋转,详细阐述了方向余弦矩阵的几何意义,并展示了欧拉角如何与旋转矩阵相互转换。文章还提到了正交矩阵、欧拉角的12种旋转顺序以及存在的万向节死锁问题,为后续介绍四元数铺垫。
摘要由CSDN通过智能技术生成

四轴飞行器基础知识学习笔记(一)— 旋转矩阵与欧拉角的关系

需要的数学知识有:

  • 向量代数
  • 解析几何
  • 线性代数

参考书籍及文档:

1.方向余弦矩阵的几何意义


在研究三维立体的方向余弦矩阵之前先了解二维平面的方向余弦矩阵,设一矢量 R \bm{R} R在二维平面O x y {xy} xy坐标系中有分量 R x i {R}_x\bm{i} Rxi R y j {R}_y\bm{j} Ryj,二维平面O x 1 y 1 {x_1 y_1} x1y1坐标系为O x y {xy} xy坐标系逆时针旋转 θ \theta θ得到,矢量 R \bm{R} R在O x 1 y 1 {x_1y_1} x1y1坐标系分量为 R x 1 i 1 {R}_{x_1}\bm{i_1} Rx1i1 R y 1 j 1 {R}_{y_1}\bm{j_1} Ry1j1,所以可以得到如下公式:
R = R x i + R y j R = R x 1 i 1 + R y 1 j 1 \begin{aligned} \bm{R} &= {R}_{x}\bm{i} + {R}_{y}\bm{j} \\ \bm{R} &= {R}_{x_1}\bm{i_1} + {R}_{y_1}\bm{j_1} \end{aligned} RR=Rxi+Ryj=Rx1i1+Ry1j1

由上式可以得到:
R x i + R y j = R x 1 i 1 + R y 1 j 1 {R}_{x}\bm{i} + R_{y}\bm{j} = {R}_{x_1}\bm{i_1} + {R}_{y_1}\bm{j_1} Rxi+Ryj=Rx1i1+Ry1j1

在等式两端同时乘以 i 1 \bm{i_1} i1或者 j 1 \bm{j_1} j1,得到如下等式:
i 1 ⋅ ( R x i + R y j ) = i 1 ⋅ ( R x 1 i 1 + R y 1 j 1 ) j 1 ⋅ ( R x i + R y j ) = j 1 ⋅ ( R x 1 i 1 + R y 1 j 1 ) \begin{aligned} \bm{i_1} \cdot ({R}_{x}\bm{i} + R_{y}\bm{j}) &= \bm{i_1} \cdot ({R}_{x_1}\bm{i_1} + {R}_{y_1}\bm{j_1}) \\ \bm{j_1} \cdot ({R}_{x}\bm{i} + R_{y}\bm{j}) &= \bm{j_1} \cdot ({R}_{x_1}\bm{i_1} + {R}_{y_1}\bm{j_1}) \end{aligned} i1(Rxi+Ryj)j1(Rxi+Ryj)=i1(Rx1i1+Ry1j1)=j1(Rx1i1+Ry1j1)

根据向量点乘公式 a ⋅ b = ∣ a ∣ ∣ b ∣ cos ⁡ ∠ ( a , b ) \bm{a} \cdot \bm{b} = |a||b|\cos \angle{(\bm{a},\bm{b})} ab=abcos(a,b),因为 i \bm{i} i j \bm{j} j是单位向量,所以 ∣ i ∣ = 1 , ∣ j ∣ = 1 |i| = 1, |j| = 1 i=1,j=1,化简得到:
R x 1 = R x i ⋅ i 1 + R y j ⋅ i 1 R y 1 = R x i ⋅ j 1 + R y j ⋅ j 1 \begin{aligned} {R}_{x_1} &= {R}_{x}\bm{i} \cdot \bm{i_1} + R_{y}\bm{j} \cdot \bm{i_1} \\ {R}_{y_1} &= {R}_{x}\bm{i} \cdot \bm{j_1} + R_{y}\bm{j} \cdot \bm{j_1} \end{aligned} Rx1Ry1=Rxii1+Ryji1=Rxij1+Ryjj1

根据图中 i \bm{i} i i 1 \bm{i_1} i1 j \bm{j} j j 1 \bm{j_1} j1夹角为 θ \theta θ i \bm{i} i i 1 \bm{i_1} i1 j \bm{j} j j 1 \bm{j_1} j1夹角为 90 ° − θ 90\degree-\theta 90°θ,继续将上式化简得到:
R x 1 = R x cos ⁡ ( θ ) + R y cos ⁡ ( 90 ° − θ ) = R x cos ⁡ ( θ ) + R y sin ⁡ ( θ ) R y 1 = R x cos ⁡ ( 90 ° + θ ) + R y cos ⁡ ( θ ) = − R x sin ⁡ ( θ ) + R y cos ⁡ ( θ ) \begin{aligned} {R}_{x_1} &= {R}_{x}\cos(\theta) + R_{y}\cos(90\degree-\theta) = {R}_{x}\cos(\theta) + R_{y}\sin(\theta)\\ {R}_{y_1} &= R_{x}\cos(90\degree+\theta) + {R}_{y}\cos(\theta) = -{R}_{x}\sin(\theta) + R_{y}\cos(\theta) \end{aligned} Rx1Ry1=Rxcos(θ)+Rycos(90°θ)=Rxcos(θ)+Rysin(θ)=Rxcos(90°+θ)+Rycos(θ)=Rxsin(θ)+Rycos(θ)

使用矩阵形式表示,则有:
[ R x 1 R y 1 ] = [ cos ⁡ ( θ ) sin ⁡ ( θ ) − sin ⁡ ( θ ) cos ⁡ ( θ ) ] [ R x R y ] \begin{bmatrix} {R}_{x_1} \\ {R}_{y_1} \end{bmatrix} = \begin{bmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} {R}_{x} \\ {R}_{y} \end{bmatrix} [Rx1Ry1]=[cos(θ)sin(θ)sin(θ)cos(θ)][RxRy

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值