遥感影像目标检测:Faster RCNN训练自己的数据集

本文介绍了如何利用torchvision的Faster RCNN模型训练自己的遥感影像数据集,用于建筑识别任务。内容涵盖模型获取、数据读取、Colab上的测试及结果验证,特别指出在数据读取时因Faster RCNN无需mask,需调整use_mask参数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述
前几篇文章写了如何使用maskrcnn训练自己的数据集以及如何在maskrcnn中加入pointrend模块,我使用的都是torchvision官方提供的maskrcnn,因为torchvison版本的mask rcnn是继承自FasterRCNN的,所以这里顺便介绍下如何使用torchvision的fasterrcnn网络训练自己的数据集。

1、Faster RCNN模型获取
import torchvision
from torchvision.models.detection.faster_rcnn import FastRCNNPredictor

def get_faste
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

GHZhao_GIS_RS

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值