作者:禅与计算机程序设计艺术
1.简介
随着智能手机、智能电视、智能家居等领域不断发展,无人驾驶汽车这一新技术也逐渐成熟起来。作为一种新型的自动驾驶模式,无人驾驶汽车系统能够通过感知环境并分析交通状况,来决定行进方向和速度,减少驾驶者的注意力、时间和体力消耗,提高驾驶效率。因此,对于无人驾驶汽车系统开发者来说,是一个十分具有挑战性的任务。 与此同时,开源社区在这一领域也蓬勃发展。如今,无人驾驶汽车相关的开源项目不计其数,每一个项目都在不断地壮大。从基础设施、软件栈到开发工具、硬件平台、算法模型,无人驾驶领域的各个方面都有开源项目,为整个系统的构建提供了强有力的支撑。因此,对于希望实现无人驾驶汽车系统的人来说,如何选择适合自己的开源项目就成为重要的一环。
2.基本概念和术语
首先,让我们来了解一下无人驾驶系统所涉及到的一些基本概念和术语。
2.1. 无人驾驶系统的定义 “无人驾驶”(self-driving)是指由机器自己控制汽车行走、驾驶、导航、避障等功能的汽车系统。根据国际标准IEEE标准化组织命名为GTA V标准。
2.2. 无人驾驶汽车平台的分类 无人驾驶汽车平台可以分为两类:基于硬件的平台和基于软件的平台。
2.3. 硬件平台的分类 主要包括四种类型:激光雷达、摄像头、激光雷达+摄像头、深度相机。
2.4. 激光雷达 激光雷达是用于测距和识别目标的小型传感器。激光雷达在移动时保持固定角度,扫面环境并输出能量。
2.5. 云台 云台是无人驾驶汽车的装置,用于对准路线并拍照。云台旋转使得车辆获得良好的视觉效果。
2.6. 计算机视觉 计算机视觉(com
本文介绍了无人驾驶汽车的基本概念和术语,如激光雷达、云台、ROS等,并探讨了核心算法原理,如计算机视觉和深度学习。文章通过Pylot、SemanticKITTI、Scenenet-DA等开源项目实例,展示了无人驾驶系统的开发模式,包括路径规划、目标检测和地图构建。同时,文章讨论了未来的发展趋势和挑战,如性能提升和算法优化。
订阅专栏 解锁全文
750





