1.背景介绍
深度学习技术的发展已经进入了一个高度激发的阶段,其中,生成对抗网络(GAN)和变分自动编码器(VAE)是两种非常重要的深度学习技术,它们在图像生成、图像分类、自然语言处理等多个领域取得了显著的成果。在本文中,我们将对这两种技术进行深入的比较和分析,旨在帮助读者更好地理解它们的优缺点以及在实际应用中的具体操作步骤。
1.1 VAE与GAN的基本概念
1.1.1 VAE(Variational Autoencoder)
变分自动编码器(VAE)是一种生成模型,它通过学习数据的概率分布来生成新的数据样本。VAE通过将数据分为两部分:观测数据和隐藏数据,其中观测数据是我们能够直接观察到的数据,而隐藏数据则是我们需要学习的数据。VAE通过学习这些隐藏数据的概率分布来生成新的数据样本。
1.1.2 GAN(Generative Adversarial Network)
生成对抗网络(GAN)是一种生成模型,它通过训练一个生成器和一个判别器来生成新的数据样本。生成器的目标是生