1. 背景介绍
1.1 人工智能的发展
随着人工智能技术的不断发展,自然语言处理(NLP)领域取得了显著的进展。特别是近年来,大型预训练语言模型(如BERT、GPT-3等)的出现,使得NLP任务在各个方面都取得了重大突破。在这个背景下,语义角色标注(Semantic Role Labeling, SRL)和事件抽取(Event Extraction)作为NLP领域的重要任务,也得到了广泛的关注。
1.2 语义角色标注与事件抽取的重要性
语义角色标注和事件抽取是自然语言理解的关键任务,它们可以帮助我们从文本中抽取出有意义的信息,从而更好地理解文本的含义。具体来说,语义角色标注旨在识别句子中的谓词(动词或名词)及其相关的论元(如主语、宾语等),而事件抽取则关注于从文本中抽取出具有特定类型的事件及其相关的参与者。这两个任务在很多实际应用场景中具有重要价值,如信息检索、知识图谱构建、智能问答等。
2. 核心概念与联系
2.1 语义角色标注
2.1.1 语义角色的定义
语义角色是指在句子中表示某一谓词与其论元之间语义关系的标签。常见