1. 背景介绍
1.1 人工智能与服装产业
近年来,人工智能(AI)技术在各个领域都取得了显著的进展,服装产业也不例外。AI 的应用范围从服装设计、生产制造到零售和客户服务等各个环节,极大地提升了效率和用户体验。然而,AI 技术的成功应用离不开高质量的训练数据。在服装领域,数据的多模态特性(图像、文本、语音等)为 AI 模型的训练带来了新的挑战。
1.2 服装领域的数据标注挑战
服装领域的数据标注面临着以下几个挑战:
- 数据的多模态特性: 服装数据通常包括图像、文本、语音等多种模态信息。例如,一件衣服的图像可以提供款式、颜色、材质等信息,而衣服的描述文本则可以提供品牌、尺码、价格等信息。如何有效地融合这些多模态信息,对 AI 模型的训练至关重要。
- 标注任务的复杂性: 服装领域的标注任务通常涉及到细粒度的分类、目标检测、属性识别等。例如,对一件衣服进行分类,需要识别其款式、风格、适用场合等信息;对服装图像进行目标检测,需要精确定位衣服的位置和边界;对服装属性进行识别,需要判断衣服的颜色、材质、图案等特征。
- 标注数据的主观性: 服装领域的标注数据往往具有一定的主观性。例如