李群与李代数基础:第1节 函数层
1.背景介绍
李群(Lie Group)和李代数(Lie Algebra)是现代数学和物理学中的重要概念,广泛应用于对称性、微分方程、量子力学等领域。李群是一个光滑的流形,同时也是一个群,群运算在流形上是光滑的。李代数则是与李群紧密相关的代数结构,描述了李群在单位元附近的局部性质。
在计算机科学和人工智能领域,李群和李代数的应用也越来越广泛。例如,在机器人学中,李群用于描述和计算刚体运动;在计算机视觉中,李代数用于图像配准和三维重建。理解李群和李代数的基础知识,对于从事这些领域的研究和开发工作至关重要。
2.核心概念与联系
2.1 李群的定义
李群是一个既是群又是光滑流形的数学结构。具体来说,设 $G$ 是一个群,同时也是一个光滑流形,如果群运算(乘法和逆运算)在流形上是光滑的,则称 $G$ 为一个李群。
2.2 李代数的定义
李代数是一个向量空间,配备有一个称为李括号的双线性运算。李括号满足反对称性和雅可比恒等式。李代数通常用于描述李群在单位元附近的局部性质。