深度学习的 “ 端到端模型(end-to-end learning)”

本文探讨了深度学习中的端到端学习方法与传统机器学习的区别。端到端学习通过神经网络将原始数据直接转换为最终输出,简化了特征工程过程,并能更好地利用数据之间的内在联系。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

相对于深度学习,传统机器学习的流程往往由多个独立的模块组成,比如在一个典型的自然语言处理(Natural Language Processing)问题中,包括分词、词性标注、句法分析、语义分析等多个独立步骤,每个步骤是一个独立的任务,其结果的好坏会影响到下一步骤,从而影响整个训练的结果,这是非端到端的。

而深度学习模型在训练过程中,从输入端(输入数据)到输出端会得到一个预测结果,与真实结果相比较会得到一个误差,这个误差会在模型中的每一层传递(反向传播),每一层的表示都会根据这个误差来做调整,直到模型收敛或达到预期的效果才结束,中间所有的操作都包含在神经网络内部,不再分成多个模块处理。由原始数据输入,到结果输出,从输入端到输出端,中间的神经网络自成一体(也可以当做黑盒子看待),这是端到端的。

两者相比,端到端的学习省去了在每一个独立学习任务执行之前所做的数据标注,为样本做标注的代价是昂贵的、易出错的。

### 方法概述 通过模仿强化学习教练实现端到端城市驾驶的方法旨在使自动驾驶车辆能够像人类驾驶员一样,在复杂的城市环境中安全高效地行驶。此方法融合了模仿学习和强化学习的优势,从而提高了模型的泛化能力和适应性[^1]。 ### 数据收集与预处理 为了训练该模型,数据集由经验丰富的虚拟教练在模拟器中的行为构成。这些数据不仅包含了各种交通状况下的操作指令,还记录了环境感知信息以及相应的奖励信号。对于原始传感器输入,进行了必要的转换以适配神经网络的要求,例如图像裁剪、颜色空间调整等操作。 ### 模型架构设计 所采用的深度神经网络结构通常包括卷积层用于提取视觉特征,全连接层负责决策制定。特别之处在于引入了一个额外的状态评估分支来预测当前状态下采取特定行动所能获得的预期回报,这有助于指导策略优化过程并加速收敛速度。 ```python import torch.nn as nn class EndToEndDrivingModel(nn.Module): def __init__(self, num_actions): super(EndToEndDrivingModel, self).__init__() # 卷积基底部分 self.conv_base = nn.Sequential( nn.Conv2d(in_channels=3, out_channels=64, kernel_size=(8, 8), stride=(4, 4)), nn.ReLU(), nn.Conv2d(in_channels=64, out_channels=128, kernel_size=(4, 4), stride=(2, 2)), nn.ReLU() ) # 行动价值估计头 self.action_value_head = nn.Linear(1024, num_actions) # 预期回报估计头 self.expected_return_head = nn.Linear(1024, 1) def forward(self, x): features = self.conv_base(x).view(-1, 1024) action_values = self.action_value_head(features) expected_returns = self.expected_return_head(features) return action_values, expected_returns ``` ### 训练流程说明 在整个训练过程中,除了利用监督损失函数最小化模仿误差外,还会加入基于累积折扣奖励的时间差分误差作为辅助目标,以此鼓励模型探索更优解路径。随着迭代次数增加,权重更新逐渐偏向于那些能带来更高长期收益的动作序列。
评论 14
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ViatorSun

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值