概率机器人学习记录1:贝叶斯定律

本文详细解释了贝叶斯定律在机器人和导航中的应用,如贝叶斯滤波,通过实例说明如何根据传感器测量值更新传感器故障的后验概率。文章涉及高斯分布、狄氏分布以及如何结合先验信息和测量数据进行概率更新。
摘要由CSDN通过智能技术生成

1 贝叶斯定律

是机器人中应用概率最常见的一个定律,所以先把这个搞透。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
【个人理解】:希望由传感器的测量值y作为已知,推导得到各个x的概率,概率最大的就最可能,于是由y->x。
但前提是:先知道确定的每个x时,测量值y应该是多少。

在这里插入图片描述
在这里插入图片描述

2 贝叶斯滤波

在这里插入图片描述在这里插入图片描述
理解:以导航为例,

  • x t − 1 x_{t-1} xt1是前一计算时刻的位置,实际位置周边各个位置都有一定的可能性,其分布为 b e l ( x t − 1 ) bel(x_{t-1}) bel(xt1)
  • 根据odom信息可以估算出当前位置当前各个位置的可能性: b e l ‾ ( x t ) \overline{bel}(x_{t}) bel(xt)
  • 再用贝叶斯定律,得到当前测量 z t z_{t} zt下的各个位置的可能性 b e l ( x t ) bel(x_{t}) bel(xt)。其中 p { z t ∣ x t } p\left \{ z_{t} | x_{t} \right \} p{ztxt}是在 x t x_{t} xt位置获得该测量的概率,比如在该位置看到的地图与扫描的地图一致的概率。
  • 如果还不好理解,书中机器人开门的例子比较简单,可以参考。
    在这里插入图片描述
    【链接】狄氏分布

作业:

1

在这里插入图片描述

在这个问题中,我们有一个可以测量0-3m距离的传感器,但传感器可能会故障。
当传感器正常工作时,测量值在0-3m之间均匀分布;当传感器故障时,无论实际距离是多少,输出值都小于1m。
我们知道传感器故障的先验概率是0.01。现在,我们要计算当机器人连续查询传感器N次,每次测量值都小于1m时,传感器故障的后验概率。

假设:
P(F) 是传感器故障的先验概率,P(F) = 0.01
P(N) 是传感器正常的先验概率,P(N) = 1 - P(F) = 0.99
P(M<1|F) 是传感器故障时测量值小于1m的概率,P(M<1|F) = 1(因为故障时总是小于1m)
P(M<1|N) 是传感器正常时测量值小于1m的概率,P(M<1|N) = 1/3(因为0-3m均匀分布,小于1m的概率是1/3)

我们要找的是传感器故障的后验概率 P(F|M<1)^N,其中N是查询次数。
根据贝叶斯定理,我们有:
P(F|M<1)^N = [P(F) × P(M<1|F)^N] / [P(F) × P(M<1|F)^N + P(N) × P(M<1|N)^N]

现在我们要来计算这个后验概率。
对于N=1到10,传感器故障的后验概率分别为:
N=1: 0.0294117647058824
N=2: 0.0833333333333333
N=3: 0.214285714285714
N=4: 0.45
N=5: 0.710526315789474
N=6: 0.880434782608696
N=7: 0.956692913385827
N=8: 0.985135135135135
N=9: 0.994995450409463
N=10: 0.998326232501522

这些后验概率表示了当机器人连续查询传感器N次,每次测量值都小于1m时,传感器故障的可能性。随着查询次数的增加,后验概率迅速上升,表明连续多次的测量结果都小于1m时,传感器故障的可能性变得越来越大。

上面的公式是根据贝叶斯定理推导出来的。
贝叶斯定理是一个描述条件概率之间关系的定理,它允许我们根据新的信息更新某个事件发生的概率。
在这个问题中,我们要更新的是传感器故障的概率,根据连续多次测量值都小于1m这一新的信息。

贝叶斯定理的一般形式是:
P ( A ∣ B ) = P ( B ∣ A ) × P ( A ) P ( B ) P(A|B) = \frac{P(B|A) \times P(A)}{P(B)} P(AB)=P(B)P(BA)×P(A)
其中, P ( A ∣ B ) P(A|B) P(AB) 是在事件B发生的条件下事件A发生的概率, P ( B ∣ A ) P(B|A) P(BA) 是在事件A发生的条件下事件B发生的概率, P ( A ) P(A) P(A) P ( B ) P(B) P(B) 分别是事件A和事件B发生的概率。

在这个具体问题中,我们有以下事件:
A:传感器故障(F)
B:测量值小于1m(M<1)

我们要求的是 P ( A ∣ B N ) P(A|B^N) P(ABN),即在连续N次测量值都小于1m的条件下,传感器故障的概率。

根据贝叶斯定理,我们有:
P ( A ∣ B N ) = P ( B N ∣ A ) × P ( A ) P ( B N ) P(A|B^N) = \frac{P(B^N|A) \times P(A)}{P(B^N)} P(ABN)=P(BN)P(BNA)×P(A)

其中, P ( B N ∣ A ) P(B^N|A) P(BNA) 是在传感器故障的条件下,连续N次测量值都小于1m的概率。
由于每次测量是独立的,所以 P ( B N ∣ A ) = P ( B ∣ A ) N = 1 N = 1 P(B^N|A) = P(B|A)^N = 1^N = 1 P(BNA)=P(BA)N=1N=1(因为当传感器故障时,每次测量值都小于1m的概率是1)。

P ( A ) P(A) P(A) 是传感器故障的先验概率,已知为0.01。

P ( B N ) P(B^N) P(BN) 是在连续N次测量值都小于1m的总概率,它可以分解为两种情况的概率之和:传感器故障且连续N次测量值都小于1m的概率,加上传感器正常但连续N次测量值都小于1m的概率。
即:
P ( B N ) = P ( B N ∣ A ) × P ( A ) + P ( B N ∣ N ) × P ( N ) P(B^N) = P(B^N|A) \times P(A) + P(B^N|N) \times P(N) P(BN)=P(BNA)×P(A)+P(BNN)×P(N)
其中, P ( B N ∣ N ) P(B^N|N) P(BNN) 是在传感器正常的条件下,连续N次测量值都小于1m的概率,由于每次测量是独立的且测量值小于1m的概率是1/3,所以 P ( B N ∣ N ) = ( 1 / 3 ) N P(B^N|N) = (1/3)^N P(BNN)=(1/3)N
P ( N ) P(N) P(N) 是传感器正常的先验概率,已知为0.99。

将上述所有值代入贝叶斯定理的公式中,即可得到:
P ( A ∣ B N ) = 1 × 0.01 1 × 0.01 + ( 1 / 3 ) N × 0.99 P(A|B^N) = \frac{1 \times 0.01}{1 \times 0.01 + (1/3)^N \times 0.99} P(ABN)=1×0.01+(1/3)N×0.991×0.01

这就是上面给出的公式。它允许我们根据连续N次测量值都小于1m这一新的信息,来更新传感器故障的后验概率。

4

在这里插入图片描述

( a ) 先验 p ( x ) p(x) p(x) 和测量 p ( z ∣ x ) p(z|x) p(zx) 的概率密度函数:

先验 p ( x ) p(x) p(x) 是一个高斯分布,其均值是 x init = 1000 m x_{\text{init}} = 1000m xinit=1000m,方差是 σ x 2 = 900 m 2 \sigma_{x}^2 = 900m^2 σx2=900m2。因此,其概率密度函数为:

p ( x ) = 1 2 π σ x 2 exp ⁡ ( − ( x − x init ) 2 2 σ x 2 ) p(x) = \frac{1}{\sqrt{2\pi\sigma_{x}^2}} \exp\left(-\frac{(x - x_{\text{init}})^2}{2\sigma_{x}^2}\right) p(x)=2πσx2 1exp(2σx2(xxinit)2)

测量 p ( z ∣ x ) p(z|x) p(zx) 也是一个高斯分布,其均值是 x x x(因为 GPS 测量的是位置 x x x),方差是 σ z 2 = 100 m 2 \sigma_{z}^2 = 100m^2 σz2=100m2。因此,其概率密度函数为:

p ( z ∣ x ) = 1 2 π σ z 2 exp ⁡ ( − ( z − x ) 2 2 σ z 2 ) p(z|x) = \frac{1}{\sqrt{2\pi\sigma_{z}^2}} \exp\left(-\frac{(z - x)^2}{2\sigma_{z}^2}\right) p(zx)=2πσz2 1exp(2σz2(zx)2)

( b ) 使用贝叶斯准则计算后验 p ( x ∣ z ) p(x|z) p(xz)

贝叶斯准则告诉我们:

p ( x ∣ z ) = p ( z ∣ x ) p ( x ) p ( z ) p(x|z) = \frac{p(z|x)p(x)}{p(z)} p(xz)=p(z)p(zx)p(x)

其中 p ( z ) p(z) p(z) 是归一化常数,可以通过对 p ( z ∣ x ) p ( x ) p(z|x)p(x) p(zx)p(x) 关于 x x x 的积分得到。由于我们关心的是 p ( x ∣ z ) p(x|z) p(xz) 的形状而不是其确切值,我们可以忽略这个归一化常数。

将先验和测量的概率密度函数代入贝叶斯准则中,我们得到:

p ( x ∣ z ) ∝ p ( z ∣ x ) p ( x ) p(x|z) \propto p(z|x)p(x) p(xz)p(zx)p(x)
∝ exp ⁡ ( − ( z − x ) 2 2 σ z 2 ) exp ⁡ ( − ( x − x init ) 2 2 σ x 2 ) \propto \exp\left(-\frac{(z - x)^2}{2\sigma_{z}^2}\right) \exp\left(-\frac{(x - x_{\text{init}})^2}{2\sigma_{x}^2}\right) exp(2σz2(zx)2)exp(2σx2(xxinit)2)
∝ exp ⁡ ( − 1 2 ( ( z − x ) 2 σ z 2 + ( x − x init ) 2 σ x 2 ) ) \propto \exp\left(-\frac{1}{2}\left(\frac{(z - x)^2}{\sigma_{z}^2} + \frac{(x - x_{\text{init}})^2}{\sigma_{x}^2}\right)\right) exp(21(σz2(zx)2+σx2(xxinit)2))

这是一个高斯分布的指数部分,因此 p ( x ∣ z ) p(x|z) p(xz) 也是一个高斯分布。为了找到其均值和方差,我们需要通过完成平方的方法,将先验和测量的指数部分合并成一个新的二次函数。这样,我们就可以确定后验分布是一个高斯分布,并找到它的参数

( c ) 测量 X GPS = 1100 m X_{\text{GPS}} = 1100m XGPS=1100m 如何得出先验和 GPS 接收器的误差概率信息:

测量值 X GPS = 1100 m X_{\text{GPS}} = 1100m XGPS=1100m 是 GPS 接收器给出的位置估计。这个测量值本身并不直接给出先验或误差概率信息;它只是一个数据点。先验 p ( x ) p(x) p(x) 是我们对位置 x x x 的初始信念,而误差概率信息(即方差 σ z 2 \sigma_{z}^2 σz2)是 GPS 接收器提供的关于其测量准确性的度量。

当我们使用贝叶斯准则结合先验和测量时,我们实际上是在利用这两个信息源来更新我们对位置 x x x 的信念。先验告诉我们 x x x 可能在哪里(以 x init x_{\text{init}} xinit σ x 2 \sigma_{x}^2 σx2 的形式),而测量告诉我们 GPS 接收器认为 x x x 在哪里(以 X GPS X_{\text{GPS}} XGPS σ z 2 \sigma_{z}^2 σz2 的形式)。通过结合这两个信息源,我们可以得到一个更精确的位置估计(即后验 p ( x ∣ z ) p(x|z) p(xz))。

  • 11
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

code .

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值