现代控制理论(4)——李雅普诺夫稳定性理论


一、李雅普诺夫关于稳定性的定义

系统 x ˙ = f ( x , t ) \dot x=f(x,t) x˙=f(x,t),若存在状态 x e x_e xe满足 x ˙ e ≡ 0 \dot x_e\equiv 0 x˙e0,则该状态为平衡状态

1.李氏意义下的稳定

系统对于任意选定的实数 ε > 0 \varepsilon>0 ε>0,都存在一个实数 δ > 0 \delta>0 δ>0,当满足 ∣ ∣ x 0 − x e ∣ ∣ ≤ δ ||x_0-x_e||\leq\delta x0xeδ
从任意 x 0 x_0 x0出发的解都满足 ∣ ∣ Φ − x e ∣ ∣ ≤ ε ||\Phi-x_e||\leq\varepsilon Φxeε
则称平衡状态为李氏意义下的稳定
在这里插入图片描述

2.渐近稳定

解最终收敛于 x e x_e xe
在这里插入图片描述

3.大范围渐近稳定

从状态空间中所有初始状态出发的轨线都具有渐近稳定性,称这种平衡状态 x e x_e xe为大范围内渐近稳定

4.不稳定

不管 δ \delta δ有多小,只要由 S ( δ ) S(\delta) S(δ)内出发的状态轨迹超出 S ( ε ) S(\varepsilon) S(ε) 以外,则称此平衡状态是不稳定的
在这里插入图片描述

二、李雅普诺夫第一法

1.线性系统的稳定判据

李氏稳定(状态稳定)的充要条件:系统矩阵A的全部特征值位于复平面的左半部
输出稳定的充要条件:传递函数 W ( s ) = C ( S I − A ) − 1 B W(s)=C(SI-A)^{-1}B W(s)=C(SIA)1B的全部极点位于复平面左半部
PS:输出稳定不一定状态稳定,可能存在零极点对消

2.非线性系统的稳定判据

非线性系统状态方程 x ˙ = f ( x ) \dot x=f(x) x˙=f(x)
f ( x ) = [ f 1 , f 2 ⋯ f n ] f(x)=[f_1,f_2\cdots f_n] f(x)=[f1,f2fn]
向量函数的雅可比矩阵:
在这里插入图片描述
原非线性状态方程化为线性状态方程 Δ x ˙ = ∂ f ∂ x T Δ x \Delta\dot x=\frac{\partial f}{\partial x^T}\Delta x Δx˙=xTfΔx
其中 Δ x = x − x e \Delta x=x-x_e Δx=xxe
然后可套用线性系统的稳定判据

三、李雅普诺夫第二法

1.标量函数的定号性

V ( x ) V(x) V(x)为x所定义的标量函数,对于任何非零矢量x,如果:
1) V ( x ) > 0 V(x)>0 V(x)>0,则为正定的
2) V ( x ) ≥ 0 V(x)\geq0 V(x)0,则为半正定的
3) V ( x ) < 0 V(x)<0 V(x)<0,则为负定的
3) V ( x ) ≤ 0 V(x)\leq0 V(x)0,则为半负定的

2.稳定性原理

1、 V ( x ) V(x) V(x)正定, V ˙ ( x ) \dot V(x) V˙(x)负定,在原点是渐近稳定的
并且如果 ∣ ∣ x ∣ ∣ − > ∞ , V ( x ) − > ∞ ||x||->\infty,V(x)->\infty x>,V(x)>,则系统是大范围渐近稳定的
2、 V ( x ) V(x) V(x)正定, V ˙ ( x ) \dot V(x) V˙(x)半负定,在非零状态 V ˙ ( x ) \dot V(x) V˙(x) 不恒为 0,在原点是渐近稳定的
3、 V ( x ) V(x) V(x)正定, V ˙ ( x ) \dot V(x) V˙(x)半负定,在非零状态 V ˙ ( x ) \dot V(x) V˙(x) 恒为 0,在原点是李氏意义下的稳定
4、 V ( x ) V(x) V(x)正定, V ˙ ( x ) \dot V(x) V˙(x)正定,在原点是不稳定的
5、 V ( x ) V(x) V(x)正定, V ˙ ( x ) \dot V(x) V˙(x)正半定,在非零状态 V ˙ ( x ) \dot V(x) V˙(x) 不恒为 0,在原点是不稳定的
6、 V ( x ) V(x) V(x)正定, V ˙ ( x ) \dot V(x) V˙(x)正半定,在非零状态 V ˙ ( x ) \dot V(x) V˙(x) 恒为 0,在原点是李氏意义下的稳定

四、李雅普诺夫方法在线性系统中的应用

选定正定二次型函数 V ( x ) V(x) V(x)为李氏函数
V ( x ) = x T P x V(x)=x^TPx V(x)=xTPx
V ˙ ( x ) = x T ( P A + A T P ) x \dot V(x)=x^T(PA+A^TP)x V˙(x)=xT(PA+ATP)x
Q = − ( P A + A T P ) Q=-(PA+A^TP) Q=(PA+ATP)
如果Q正定,则系统是大范围渐进稳定的
判定稳定性的步骤:
1、选取正定矩阵Q(通常是单位阵)
2、由 Q = − ( P A + A T P ) Q=-(PA+A^TP) Q=(PA+ATP)求P
3、判断P的正定性
4、稳定性结论

五、李雅普诺夫方法在非线性系统中的应用

1.雅可比矩阵法

x ˙ = f ( x ) \dot x=f(x) x˙=f(x)
判定稳定性的步骤:
1、求雅可比矩阵
在这里插入图片描述
2、克拉索夫斯基表达式: Q ( x ) = − [ J T + J ] Q(x)=-[J^T+J] Q(x)=[JT+J]
3、判断Q的正定性
4、稳定性结论
PS:克拉索夫斯基定理只是渐近稳定的一个充分条件不是必要条件

2.变量梯度法

1、设 ∇ V = \nabla V= V=在这里插入图片描述
2、 V ˙ ( x ) = ( ∇ V ) T x ˙ \dot V(x)=(\nabla V)^T\dot x V˙(x)=(V)Tx˙
限定 V ˙ ( x ) \dot V(x) V˙(x)为负定
3、利用 n ( n − 1 ) 2 \frac{n(n-1)}{2} 2n(n1)个旋度方程确定 ∇ V \nabla V V中的未知数
在这里插入图片描述
4、计算并验证V正定性
在这里插入图片描述
5、确定系统渐进稳定的范围

  • 23
    点赞
  • 245
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

叫我阿亮就好了-

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值