机器学习
机器学习基本概念
手持电烙铁的侠客
每天运动一小时,健康工作40年
展开
-
mnist基本例子 - Pytorch
pytorch的中文文档已经有人发出来,可以没事儿翻看。 对于领域内的书籍,应该常看常新,没事儿翻出来看一下。class ConvNet(nn.Module): def __init__(self): super().__init__() # batch*1*28*28(每次会送入batch个样本,输入通道数1(黑白图像),图像分辨率是28x28) # 下面的卷积层Conv2d的第一个参数指输入通道数,第二个参数指输出通道数,第三个参数指卷积核的原创 2022-04-05 22:03:42 · 5650 阅读 · 0 评论 -
Unet分割网络
U-Net分割与分类不同, 分类只需要判断整体图像的信息,分割需要判断每个像素的信息。比如选西瓜的项目中,分类需要解决是好西瓜还是坏西瓜的问题,而分割要解决的是,西瓜在哪里,西瓜有多大的问题。可以总结出,分割问题中,往往牵涉了几何位置等信息,而分类问题,往往是一种综合判断。分割有很广泛的应用领域,如人体识别,安全帽识别,登记照更换背景等。unet的网络结构如下:右下角有每一层的作用,u字形的左边:卷积,池化,u字形的右边:卷积,上采样。unet的广泛应用于SVM的广泛应用有着相同的原因,在小数原创 2021-04-05 16:12:06 · 534 阅读 · 0 评论 -
后验概率公式形式
后验概率公式的基本形式,这个在将HMM的时候,讲的很好W3D2: Hidden Dynamics T2 Video 6_哔哩哔哩_bilibili原创 2022-03-17 20:35:28 · 178 阅读 · 0 评论 -
基于RNN的加法运算器-从零实现循环神经网络
本文以一个简单的LSTM为例,训练一个可以做加法的长短时间记忆神经网络.生成训练数据:generate_ground_truth.py.数据格式为256范围内的正整数相加,c = a + b. 可以使用传统CNN来表示网络设计目标函数:参考1:一个使用attention模型,在karas中可视化训练的模型 https://medium.com/datalogue/attention...原创 2019-07-17 09:30:15 · 993 阅读 · 0 评论 -
Backprop KF: Learning Discriminative Deterministic State Estimators读书笔记
一,Terminology, 术语DiscriminativeDeterministicstochastic gradient descent methods原创 2019-06-24 09:41:28 · 346 阅读 · 0 评论