一、一个占用栅格地图实例
1. 建立模型
- 如果将其建模为传统贝叶斯估计
在这个问题中也是可以的,主要因为z观测在这里进行了离散化,只有两种可能(hit/mis). 因此可以采用简单的统计手段就可以把类似然概率求出来 p ( z ∣ x ) p(z|x) p(z∣x). 但是对于一般的连续性的z,就比较难了。
-
静态二值滤波建模
输入:一次观测的后验概率, 先验概率
输出:若干次观测后的后验概率
应用的主要模型:
L n = L n − 1 + l o g ( p ( x ∣ z ) 1 − p ( x ∣ z ) ) − l o g ( p ( x ) 1 − p ( x ) ) L_n = L_{n-1} + log(\frac{p(x|z)}{1-p(x|z)}) - log(\frac{p(x)}{1-p(x)}) Ln=Ln−1+log(1−p(x∣z)p(x∣z))−log(1−p(x)p(x))
最后得到概率: L = l o g ( p 1 − p ) L = log(\frac{p} { 1 - p}) L=log(1−pp)
2. 举例
待估计的参数是一个占用栅格,用x表示其状态
x
=
[
0
,
1
]
=
[
占
用
,
空
白
]
x = [{0, 1}] = [占用,空白]
x=[0,1]=[占用,空白]. 有一个激光雷达,其观测为z,
z
=
[
击
中
、
空
旷
]
z = [击中、空旷]
z=[击中、空旷]. 从使用经验可知,
p
(
x
=
占
用
∣
z
=
击
中
)
=
0.99
p(x = 占用|z = 击中) = 0.99
p(x=占用∣z=击中)=0.99,
p
(
x
=
空
白
∣
z
=
空
旷
)
=
0.95
p(x = 空白|z = 空旷) = 0.95
p(x=空白∣z=空旷)=0.95.
现在一个激光器进行了10次观测,前9次为击中,最后一次为空旷,求该栅格为占用的概率,使用二值静态贝叶斯估计的方法计算其概率为:
L
0
=
l
o
g
(
0.5
/
(
1
−
0.5
)
)
=
0
L
1
=
L
0
+
l
o
g
(
0.99
/
0.01
)
−
L
0
=
l
o
g
99
L
2
=
L
1
+
l
o
g
(
0.99
/
0.01
)
−
L
0
=
2
∗
l
o
g
99
.
.
.
L
9
=
L
8
+
l
o
g
(
0.99
/
0.01
)
−
L
0
=
9
∗
l
o
g
99
L
10
=
L
9
+
l
o
g
(
0.05
/
(
1
−
0.05
)
)
−
L
0
=
9
∗
l
o
g
99
+
l
o
g
0.0526
L_0 = log(0.5/(1-0.5)) = 0 \\ L_1 = L_0 + log(0.99/0.01) - L_0 = log99\\ L_2 = L_1 + log(0.99/0.01) - L_0 = 2*log99\\...\\L_9 = L_8 + log(0.99/0.01) - L_0 = 9*log99\\ L_{10} = L_9 + log(0.05/(1-0.05)) - L_0 = 9*log99 + log0.0526
L0=log(0.5/(1−0.5))=0L1=L0+log(0.99/0.01)−L0=log99L2=L1+log(0.99/0.01)−L0=2∗log99...L9=L8+log(0.99/0.01)−L0=9∗log99L10=L9+log(0.05/(1−0.05))−L0=9∗log99+log0.0526
因此:
p
(
x
=
占
用
)
=
1
−
1
/
(
1
+
e
x
p
{
l
(
x
)
}
)
=
1
p(x = 占用) = 1 - 1 / (1 + exp\{l(x)\}) = 1
p(x=占用)=1−1/(1+exp{l(x)})=1 非常靠近
3. 相关分析
- Who: 机械手判断二值问题(门的开关)、Gmapping, RTAB-MAP, Cartographer的栅格地图采用这种方式。
- What:见前面的原理部分。
- When:当观测模型(p(z|x), 也就是类似然概率),过于复杂(观测空间太大)的时候,如z是原始图像。
- Where:应用在地图表达中。
- Why:因为传统贝叶斯估计,需要观测模型(类似然概率),而观测模型过于复杂,此时就要考虑逆观测模型是否可用。
- How:输入输出见模型部分。
结论
- 静态二值贝叶斯滤波解决了两个问题:
- 当类似然概率p(z|x)不容易求时,运用该方法可以进行概率的计算。如当观测z是图像等高维信息,或者黑盒信息。
- 概率累乘过程中,容易产生截断误差,该方法将乘法变成加法,参考该文
- 当然,任何一种方法都有其局限性与缺点:
- 因为推导过程中使用了二值假设,因此该方法不再能应用于点估计了,只适用于二值估计中的概率计算。
参考文献
参考资料