静态二值贝叶斯滤波

一、一个占用栅格地图实例

1. 建立模型

  • 如果将其建模为传统贝叶斯估计

在这个问题中也是可以的,主要因为z观测在这里进行了离散化,只有两种可能(hit/mis). 因此可以采用简单的统计手段就可以把类似然概率求出来 p ( z ∣ x ) p(z|x) p(zx). 但是对于一般的连续性的z,就比较难了。

  • 静态二值滤波建模

    输入:一次观测的后验概率, 先验概率

    输出:若干次观测后的后验概率

    应用的主要模型

    L n = L n − 1 + l o g ( p ( x ∣ z ) 1 − p ( x ∣ z ) ) − l o g ( p ( x ) 1 − p ( x ) ) L_n = L_{n-1} + log(\frac{p(x|z)}{1-p(x|z)}) - log(\frac{p(x)}{1-p(x)}) Ln=Ln1+log(1p(xz)p(xz))log(1p(x)p(x))

    最后得到概率: L = l o g ( p 1 − p ) L = log(\frac{p} { 1 - p}) L=log(1pp)

2. 举例

待估计的参数是一个占用栅格,用x表示其状态 x = [ 0 , 1 ] = [ 占 用 , 空 白 ] x = [{0, 1}] = [占用,空白] x=[0,1]=[]. 有一个激光雷达,其观测为z, z = [ 击 中 、 空 旷 ] z = [击中、空旷] z=[]. 从使用经验可知, p ( x = 占 用 ∣ z = 击 中 ) = 0.99 p(x = 占用|z = 击中) = 0.99 p(x=z=)=0.99, p ( x = 空 白 ∣ z = 空 旷 ) = 0.95 p(x = 空白|z = 空旷) = 0.95 p(x=z=)=0.95.
现在一个激光器进行了10次观测,前9次为击中,最后一次为空旷,求该栅格为占用的概率,使用二值静态贝叶斯估计的方法计算其概率为:
L 0 = l o g ( 0.5 / ( 1 − 0.5 ) ) = 0 L 1 = L 0 + l o g ( 0.99 / 0.01 ) − L 0 = l o g 99 L 2 = L 1 + l o g ( 0.99 / 0.01 ) − L 0 = 2 ∗ l o g 99 . . . L 9 = L 8 + l o g ( 0.99 / 0.01 ) − L 0 = 9 ∗ l o g 99 L 10 = L 9 + l o g ( 0.05 / ( 1 − 0.05 ) ) − L 0 = 9 ∗ l o g 99 + l o g 0.0526 L_0 = log(0.5/(1-0.5)) = 0 \\ L_1 = L_0 + log(0.99/0.01) - L_0 = log99\\ L_2 = L_1 + log(0.99/0.01) - L_0 = 2*log99\\...\\L_9 = L_8 + log(0.99/0.01) - L_0 = 9*log99\\ L_{10} = L_9 + log(0.05/(1-0.05)) - L_0 = 9*log99 + log0.0526 L0=log(0.5/(10.5))=0L1=L0+log(0.99/0.01)L0=log99L2=L1+log(0.99/0.01)L0=2log99...L9=L8+log(0.99/0.01)L0=9log99L10=L9+log(0.05/(10.05))L0=9log99+log0.0526
因此: p ( x = 占 用 ) = 1 − 1 / ( 1 + e x p { l ( x ) } ) = 1 p(x = 占用) = 1 - 1 / (1 + exp\{l(x)\}) = 1 p(x=)=11/(1+exp{l(x)})=1 非常靠近

3. 相关分析

  • Who: 机械手判断二值问题(门的开关)、Gmapping, RTAB-MAP, Cartographer的栅格地图采用这种方式。
  • What:见前面的原理部分。
  • When:当观测模型(p(z|x), 也就是类似然概率),过于复杂(观测空间太大)的时候,如z是原始图像。
  • Where:应用在地图表达中。
  • Why:因为传统贝叶斯估计,需要观测模型(类似然概率),而观测模型过于复杂,此时就要考虑逆观测模型是否可用。
  • How:输入输出见模型部分。

结论

  1. 静态二值贝叶斯滤波解决了两个问题:
  • 当类似然概率p(z|x)不容易求时,运用该方法可以进行概率的计算。如当观测z是图像等高维信息,或者黑盒信息。
  • 概率累乘过程中,容易产生截断误差,该方法将乘法变成加法,参考该文
  1. 当然,任何一种方法都有其局限性与缺点:
  • 因为推导过程中使用了二值假设,因此该方法不再能应用于点估计了,只适用于二值估计中的概率计算。

参考文献

  1. 笔记
  2. 占据栅格地图
  3. <Probabilistic Robotics>,P70 静态二值贝叶斯滤波;P214 占用栅格地图。

参考资料

  1. processon笔记
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

手持电烙铁的侠客

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值