凸优化第六章逼近与拟合 6.2最小范数问题

本文探讨了凸优化中的最小范数问题,当A的行向量相互独立,且方程Ax=b不定时,该问题寻找在范数下的唯一解。这一问题在几何、估计和设计三个方面都有不同的解释。同时,介绍了线性方程组的最小二乘解及其对偶函数,并讨论了最小罚问题,即通过残差罚函数来寻找最佳设计解决方案。
摘要由CSDN通过智能技术生成

6.2最小范数问题

最小范数问题具有如下形式:

minimize \, \, \begin{Vmatrix}x \end{Vmatrix}\\ subject \, \, to \, \, Ax=b

其中A \in R^{m\times n},b\in R^{m},x \in R^n\begin{Vmatrix} \cdot \end{Vmatrix}R^n上一种范数,A的行向量相互独立,m \leq n,m=n时唯一可行解是

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值