数论函数
定义以下数论函数:
欧拉函数
φ
(
x
)
=
∑
i
=
0
x
−
1
[
i
⊥
x
]
\varphi(x)=\sum_{i=0}^{x-1}[i\perp x]
φ(x)=∑i=0x−1[i⊥x]:表示[0,x-1]中与x互质的数的个数
常数函数
1
(
x
)
=
1
1(x)=1
1(x)=1
幂函数
I
d
k
(
x
)
=
x
k
Id_k(x)=x^k
Idk(x)=xk,当k=1时为恒等函数
i
d
(
x
)
=
x
id(x)=x
id(x)=x,当k=0时为常数函数
1
1
1
整除函数
σ
k
(
x
)
=
∑
d
∣
x
d
k
\sigma_k(x)=\sum_{d|x}d^k
σk(x)=∑d∣xdk,当k=1时为约数和函数,当k=0时为约数个数函数
d
d
d
莫比乌斯函数
μ
(
x
)
=
{
1
(
x
=
1
)
0
(
x
含有相同质因子
)
(
−
1
)
s
(
s
为
x
的不同质因子的个数
)
\mu (x)=\left\{\begin{matrix} 1\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;(x=1)\\ 0\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;(x含有相同质因子)\\ (-1)^s(s为x的不同质因子的个数) \end{matrix}\right.
μ(x)=⎩
⎨
⎧1(x=1)0(x含有相同质因子)(−1)s(s为x的不同质因子的个数)
狄利克雷卷积
定义以及基本性质
对于两个数论函数 f , g f,g f,g,定义其狄利克雷卷积为一个函数,其中 h ( n ) = ∑ d ∣ n f ( d ) g ( n d ) h(n)={\underset{d|n}\sum}f(d)g(\frac n d) h(n)=d∣n∑f(d)g(dn),记作 ( f ∗ g ) ( n ) = h ( n ) (f*g)(n)=h(n) (f∗g)(n)=h(n),或 f ∗ g = h f*g=h f∗g=h
之前已经证明过,上述数论函数,以及两个积性函数的狄利克雷卷积都是积性函数。
此外,狄利克雷卷积还符合:
交换律
f ∗ g = g ∗ f f*g=g*f f∗g=g∗f
证明一下交换律:
f
∗
g
=
∑
d
∣
n
=
f
(
d
)
g
(
n
d
)
f*g=\underset{d|n}\sum=f(d)g(\frac n d)
f∗g=d∣n∑=f(d)g(dn),令
d
=
n
d
d=\frac n d
d=dn,枚举范围不变。立即得证。
结合律
f ∗ ( g ∗ h ) = ( f ∗ g ) ∗ h f*(g*h)=(f*g)*h f∗(g∗h)=(f∗g)∗h
证明一下结合律,应用和式的变换容易证明:
①:
f
∗
(
g
∗
h
)
=
∑
d
∣
n
f
(
d
)
∑
d
′
∣
n
d
g
(
d
′
)
h
(
n
d
d
′
)
=
∑
d
∣
n
f
(
d
)
∑
d
′
∣
n
d
g
(
d
′
)
g
(
n
d
′
⋅
d
)
f*(g*h)=\underset{d|n}\sum f(d)\underset{d'|\frac n d}{\sum}g(d')h\left(\frac{\frac nd}{d'}\right)=\overset{}{\underset{d|n}\sum}f(d)\overset{}{\underset{d'|\frac nd}\sum}g({d'})g\left(\frac n {d'\cdot d}\right)
f∗(g∗h)=d∣n∑f(d)d′∣dn∑g(d′)h(d′dn)=d∣n∑f(d)d′∣dn∑g(d′)g(d′⋅dn)
②:
(
f
∗
g
)
∗
h
=
∑
d
∣
n
∑
d
′
∣
d
f
(
d
′
)
g
(
d
d
′
)
h
(
n
d
)
(f*g)*h=\underset{d|n}\sum\underset{d'|d}\sum f(d')g\left(\frac d {d'}\right)h\left(\frac n d\right)
(f∗g)∗h=d∣n∑d′∣d∑f(d′)g(d′d)h(dn)
令
d
=
d
′
,
d
′
=
d
d=d',d'=d
d=d′,d′=d:
=
∑
d
′
∣
n
∑
d
∣
d
′
f
(
d
)
g
(
d
′
d
)
g
(
n
d
′
)
=\overset{}{\underset{d'|n}\sum\overset{}{\underset{d|d'}\sum}}f(d)g(\frac {d'}d)g(\frac n {d'})
=d′∣n∑d∣d′∑f(d)g(dd′)g(d′n)
= ∑ d ′ = 1 n [ d ′ ∣ n ] ∑ d = 1 n [ d ∣ d ′ ] f ( d ) g ( d ′ d ) g ( n d ′ ) =\overset{n}{\underset{d'=1}\sum}[d'|n]\overset{n}{\underset{d=1}\sum}[d|d']f(d)g(\frac {d'}d)g(\frac n {d'}) =d′=1∑n[d′∣n]d=1∑n[d∣d′]f(d)g(dd′)g(d′n)
因为有
d
∣
d
′
,
d
′
∣
n
d|d',d'|n
d∣d′,d′∣n,显然有
d
∣
n
d|n
d∣n:
=
∑
d
′
=
1
n
[
d
′
∣
n
]
∑
d
=
1
n
[
d
∣
n
]
[
d
∣
d
′
]
f
(
d
)
g
(
d
′
d
)
g
(
n
d
′
)
=\overset{n}{\underset{d'=1}\sum}[d'|n]\overset{n}{\underset{d=1}\sum}[d|n][d|d']f(d)g(\frac {d'}d)g(\frac n {d'})
=d′=1∑n[d′∣n]d=1∑n[d∣n][d∣d′]f(d)g(dd′)g(d′n)
=
∑
d
=
1
n
[
d
∣
n
]
f
(
d
)
∑
d
′
=
1
n
[
d
′
∣
n
]
[
d
∣
d
′
]
g
(
d
′
d
)
g
(
n
d
′
)
=\overset{n}{\underset{d=1}\sum}[d|n]f(d)\overset{n}{\underset{d'=1}\sum}[d'|n][d|d']g(\frac {d'}d)g(\frac n {d'})
=d=1∑n[d∣n]f(d)d′=1∑n[d′∣n][d∣d′]g(dd′)g(d′n)
=
∑
d
∣
n
f
(
d
)
∑
d
′
=
1
n
[
d
∣
d
′
]
[
d
′
∣
n
]
g
(
d
′
d
)
g
(
n
d
′
)
=\overset{}{\underset{d|n}\sum}f(d)\overset{n}{\underset{d'=1}\sum}[d|d'][d'|n]g(\frac {d'}d)g(\frac n {d'})
=d∣n∑f(d)d′=1∑n[d∣d′][d′∣n]g(dd′)g(d′n)
=
∑
d
∣
n
f
(
d
)
∑
d
′
=
1
⌊
n
d
⌋
[
d
′
⋅
d
∣
n
]
g
(
d
′
)
g
(
n
d
′
⋅
d
)
=\overset{}{\underset{d|n}\sum}f(d)\overset{\left\lfloor\frac n d\right\rfloor}{\underset{d'=1}\sum}[d'\cdot d|n]g({d'})g(\frac n {d'\cdot d})
=d∣n∑f(d)d′=1∑⌊dn⌋[d′⋅d∣n]g(d′)g(d′⋅dn)
前面已经限制过了,一定有
d
∣
n
d|n
d∣n,因此艾弗森括号可以除过来:
=
∑
d
∣
n
f
(
d
)
∑
d
′
=
1
⌊
n
d
⌋
[
d
′
∣
n
d
]
g
(
d
′
)
g
(
n
d
′
⋅
d
)
=\overset{}{\underset{d|n}\sum}f(d)\overset{\left\lfloor\frac n d\right\rfloor}{\underset{d'=1}\sum}\left[d'|\frac nd\right]g({d'})g(\frac n {d'\cdot d})
=d∣n∑f(d)d′=1∑⌊dn⌋[d′∣dn]g(d′)g(d′⋅dn)
=
∑
d
∣
n
f
(
d
)
∑
d
′
∣
n
d
⌊
n
d
⌋
g
(
d
′
)
g
(
n
d
′
⋅
d
)
=\overset{}{\underset{d|n}\sum}f(d)\overset{\left\lfloor\frac n d\right\rfloor}{\underset{d'|\frac nd}\sum}g({d'})g(\frac n {d'\cdot d})
=d∣n∑f(d)d′∣dn∑⌊dn⌋g(d′)g(d′⋅dn)
=
∑
d
∣
n
f
(
d
)
∑
d
′
∣
n
d
g
(
d
′
)
g
(
n
d
′
⋅
d
)
=\overset{}{\underset{d|n}\sum}f(d)\overset{}{\underset{d'|\frac nd}\sum}g({d'})g(\frac n {d'\cdot d})
=d∣n∑f(d)d′∣dn∑g(d′)g(d′⋅dn)
由上可知证毕。
分配律
f ∗ ( g + h ) = f ∗ g + f ∗ h f*(g+h)=f*g+f*h f∗(g+h)=f∗g+f∗h
分配律很显然。
单位元
此外,定义狄利克雷卷积单位元函数,简称为元函数: ε ( n ) = [ n = 1 ] \varepsilon(n)=[n=1] ε(n)=[n=1]
逆元
若有 f ∗ f − 1 = ε f*f^{-1}=\varepsilon f∗f−1=ε,则称 f f f与 f − 1 f^{-1} f−1互为狄利克雷卷积逆元,记作 f − 1 f^{-1} f−1。
常用卷积关系
单位元
显然对于任意函数 f f f,都有: f ∗ ε = f f*\varepsilon=f f∗ε=f
常数函数与莫比乌斯函数
常数函数与莫比乌斯函数互为狄利克雷卷积逆元:
μ
∗
1
=
ε
\mu*1=\varepsilon
μ∗1=ε
在莫比乌斯反演中给出证明。
整除函数与幂函数
I d k ∗ 1 = σ k Id_k*1=\sigma_k Idk∗1=σk
证明很显然:
I
d
k
∗
1
=
∑
d
∣
n
d
k
=
σ
k
Id_k*1=\underset{d|n}\sum d^k=\sigma_k
Idk∗1=d∣n∑dk=σk
注意到 μ ∗ 1 = ε \mu*1=\varepsilon μ∗1=ε,因而有 σ k ∗ μ = I d k \sigma_k*\mu=Id_k σk∗μ=Idk
恒等函数与欧拉函数
φ ∗ 1 = i d \varphi*1=id φ∗1=id
证明:
设
p
∈
P
p\in\mathbb{P}
p∈P,首先我们证明:
(
φ
∗
1
)
(
p
k
)
=
∑
d
∣
p
k
φ
(
d
)
(\varphi*1)(p^k)=\underset{d|p^k}\sum \varphi(d)
(φ∗1)(pk)=d∣pk∑φ(d)
=
∑
i
=
0
k
φ
(
p
i
)
=\overset{k}{\underset{i=0}\sum}\varphi(p^i)
=i=0∑kφ(pi)
=
1
+
∑
i
=
1
k
φ
(
p
i
)
=1+\overset{k}{\underset{i=1}\sum}\varphi(p^i)
=1+i=1∑kφ(pi)
=
1
+
∑
i
=
1
k
(
p
−
1
)
p
i
−
1
=1+\overset{k}{\underset{i=1}\sum}(p-1)p^{i-1}
=1+i=1∑k(p−1)pi−1
=
1
+
∑
i
=
1
k
p
i
−
∑
i
=
1
k
p
i
−
1
=1+\overset{k}{\underset{i=1}\sum}p^i-\overset{k}{\underset{i=1}\sum}p^{i-1}
=1+i=1∑kpi−i=1∑kpi−1
=
1
+
∑
i
=
1
k
p
i
−
∑
i
=
0
k
−
1
p
i
=1+\overset{k}{\underset{i=1}\sum}p^i-\overset{k-1}{\underset{i=0}\sum}p^{i}
=1+i=1∑kpi−i=0∑k−1pi
=
∑
i
=
0
k
p
i
−
∑
i
=
0
k
−
1
p
i
=\overset{k}{\underset{i=0}\sum}p^i-\overset{k-1}{\underset{i=0}\sum}p^{i}
=i=0∑kpi−i=0∑k−1pi
=
p
k
=
I
d
k
(
p
)
=p^k=Id_k(p)
=pk=Idk(p)
此后我们注意到,两个积性函数的狄利克雷卷积仍然是积性函数,因此可以把 ( φ ∗ 1 ) ( n ) (\varphi*1)(n) (φ∗1)(n)拆成 n n n的质因子幂次的连乘积的形式,这样立即得证。
QED.
因为有 φ ∗ 1 = i d \varphi*1=id φ∗1=id,前面说过, 1 , μ 1,\mu 1,μ互为逆元,因此有: φ = i d ∗ μ \varphi=id*\mu φ=id∗μ,这也就用狄利克雷卷积的方法证明了,欧拉函数是积性函数。(大雾)
φ ∗ 1 = i d \varphi*1=id φ∗1=id,这事实上证明了 n = ∑ d ∣ n φ ( d ) n=\underset{d|n}{\sum}\varphi(d) n=d∣n∑φ(d)。
总结
常用:
μ
∗
1
=
ε
\mu*1=\varepsilon
μ∗1=ε
i
d
∗
μ
=
φ
id*\mu=\varphi
id∗μ=φ
φ
∗
1
=
i
d
\varphi*1=id
φ∗1=id
不常用:
I
d
k
∗
1
=
σ
k
Id_k*1=\sigma_k
Idk∗1=σk
逆元
对于 f f f的逆元 f − 1 f^{-1} f−1,则 f ∗ f − 1 = ε f*f^{-1}=\varepsilon f∗f−1=ε,令 n = 1 n=1 n=1,则: f − 1 ( 1 ) = 1 f ( 1 ) f^{-1}(1)=\frac 1 {f(1)} f−1(1)=f(1)1,因此逆元存在的必要条件为 f ( 1 ) ≠ 0 f(1)\neq 0 f(1)=0
此外逆元唯一,假设 f ∗ g = ε , f ∗ h = ε f*g=\varepsilon,f*h=\varepsilon f∗g=ε,f∗h=ε,则有 f ∗ g = f ∗ h f*g=f*h f∗g=f∗h, g = h g=h g=h。
此外,有 f ∗ f − 1 = ε f*f^{-1}=\varepsilon f∗f−1=ε,若 f f f为积性函数,可知 f − 1 f^{-1} f−1为积性函数。
证明一下:
设
n
=
a
×
b
,
a
⊥
b
n=a\times b,a\perp b
n=a×b,a⊥b
首先有:
(
(
f
∗
f
−
1
)
(
a
)
)
(
(
f
∗
f
−
1
)
(
b
)
)
=
ε
\left(\left(f*f^{-1}\right)(a)\right)\left(\left(f*f^{-1}\right)(b)\right)=\varepsilon
((f∗f−1)(a))((f∗f−1)(b))=ε
则:
∑
x
∣
a
f
(
x
)
f
−
1
(
a
x
)
∑
y
∣
b
f
(
y
)
f
−
1
(
b
y
)
=
ε
\underset{x|a}\sum f(x)f^{-1}(\frac a x)\underset{y|b}\sum f(y)f^{-1}(\frac by)=\varepsilon
x∣a∑f(x)f−1(xa)y∣b∑f(y)f−1(yb)=ε
∑
x
∣
a
∑
y
∣
b
f
(
x
y
)
f
−
1
(
a
x
)
f
−
1
(
b
y
)
=
ε
\underset{x|a}\sum\underset{y|b}\sum f(xy)f^{-1}(\frac a x)f^{-1}(\frac by)=\varepsilon
x∣a∑y∣b∑f(xy)f−1(xa)f−1(yb)=ε
其次有:
(
f
∗
f
−
1
)
(
a
b
)
=
ε
(f*f^{-1})(ab)=\varepsilon
(f∗f−1)(ab)=ε
则:
∑
d
∣
a
b
f
(
d
)
f
−
1
(
n
d
)
=
ε
\underset{d|ab}\sum f(d)f^{-1}(\frac n d)=\varepsilon
d∣ab∑f(d)f−1(dn)=ε
反向应用引理:
∑
x
∣
a
∑
y
∣
b
f
(
x
y
)
f
−
1
(
a
b
x
y
)
=
ε
\underset{x|a}{\sum}\underset{y|b}\sum f(xy)f^{-1}(\frac {ab}{xy})=\varepsilon
x∣a∑y∣b∑f(xy)f−1(xyab)=ε
两式画等号:
∑
x
∣
a
∑
y
∣
b
f
(
x
y
)
f
−
1
(
a
x
)
f
−
1
(
b
y
)
=
∑
x
∣
a
∑
y
∣
b
f
(
x
y
)
f
−
1
(
a
b
x
y
)
\underset{x|a}\sum\underset{y|b}\sum f(xy)f^{-1}(\frac a x)f^{-1}(\frac by)=\underset{x|a}{\sum}\underset{y|b}\sum f(xy)f^{-1}(\frac {ab}{xy})
x∣a∑y∣b∑f(xy)f−1(xa)f−1(yb)=x∣a∑y∣b∑f(xy)f−1(xyab)
对比系数,则 f − 1 ( a x ) f − 1 ( b y ) = f − 1 ( a b x y ) f^{-1}(\frac a x)f^{-1}(\frac by)=f^{-1}(\frac {ab}{xy}) f−1(xa)f−1(yb)=f−1(xyab)。显然 f − 1 f^{-1} f−1是一个积性函数。
易见:若 f ∗ g = h f*g=h f∗g=h, f , h f,h f,h为积性函数,则 g g g为积性函数。
后记
于是皆大欢喜。