狄利克雷卷积

数论函数

定义以下数论函数:
欧拉函数 φ ( x ) = ∑ i = 0 x − 1 [ i ⊥ x ] \varphi(x)=\sum_{i=0}^{x-1}[i\perp x] φ(x)=i=0x1[ix]:表示[0,x-1]中与x互质的数的个数
常数函数 1 ( x ) = 1 1(x)=1 1(x)=1
幂函数 I d k ( x ) = x k Id_k(x)=x^k Idk(x)=xk,当k=1时为恒等函数 i d ( x ) = x id(x)=x id(x)=x,当k=0时为常数函数 1 1 1
整除函数 σ k ( x ) = ∑ d ∣ x d k \sigma_k(x)=\sum_{d|x}d^k σk(x)=dxdk,当k=1时为约数和函数,当k=0时为约数个数函数 d d d
莫比乌斯函数 μ ( x ) = { 1                                                                            ( x = 1 ) 0                                          ( x 含有相同质因子 ) ( − 1 ) s ( s 为 x 的不同质因子的个数 ) \mu (x)=\left\{\begin{matrix} 1\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;(x=1)\\ 0\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;(x含有相同质因子)\\ (-1)^s(s为x的不同质因子的个数) \end{matrix}\right. μ(x)= 1(x=1)0(x含有相同质因子)(1)s(sx的不同质因子的个数)

狄利克雷卷积

定义以及基本性质

对于两个数论函数 f , g f,g f,g,定义其狄利克雷卷积为一个函数,其中 h ( n ) = ∑ d ∣ n f ( d ) g ( n d ) h(n)={\underset{d|n}\sum}f(d)g(\frac n d) h(n)=dnf(d)g(dn),记作 ( f ∗ g ) ( n ) = h ( n ) (f*g)(n)=h(n) (fg)(n)=h(n),或 f ∗ g = h f*g=h fg=h

之前已经证明过,上述数论函数,以及两个积性函数的狄利克雷卷积都是积性函数。

此外,狄利克雷卷积还符合:

交换律

f ∗ g = g ∗ f f*g=g*f fg=gf

证明一下交换律:
f ∗ g = ∑ d ∣ n = f ( d ) g ( n d ) f*g=\underset{d|n}\sum=f(d)g(\frac n d) fg=dn=f(d)g(dn),令 d = n d d=\frac n d d=dn,枚举范围不变。立即得证。

结合律

f ∗ ( g ∗ h ) = ( f ∗ g ) ∗ h f*(g*h)=(f*g)*h f(gh)=(fg)h

证明一下结合律,应用和式的变换容易证明:
①: f ∗ ( g ∗ h ) = ∑ d ∣ n f ( d ) ∑ d ′ ∣ n d g ( d ′ ) h ( n d d ′ ) = ∑ d ∣ n f ( d ) ∑ d ′ ∣ n d g ( d ′ ) g ( n d ′ ⋅ d ) f*(g*h)=\underset{d|n}\sum f(d)\underset{d'|\frac n d}{\sum}g(d')h\left(\frac{\frac nd}{d'}\right)=\overset{}{\underset{d|n}\sum}f(d)\overset{}{\underset{d'|\frac nd}\sum}g({d'})g\left(\frac n {d'\cdot d}\right) f(gh)=dnf(d)ddng(d)h(ddn)=dnf(d)ddng(d)g(ddn)

②: ( f ∗ g ) ∗ h = ∑ d ∣ n ∑ d ′ ∣ d f ( d ′ ) g ( d d ′ ) h ( n d ) (f*g)*h=\underset{d|n}\sum\underset{d'|d}\sum f(d')g\left(\frac d {d'}\right)h\left(\frac n d\right) (fg)h=dnddf(d)g(dd)h(dn)
d = d ′ , d ′ = d d=d',d'=d d=d,d=d
= ∑ d ′ ∣ n ∑ d ∣ d ′ f ( d ) g ( d ′ d ) g ( n d ′ ) =\overset{}{\underset{d'|n}\sum\overset{}{\underset{d|d'}\sum}}f(d)g(\frac {d'}d)g(\frac n {d'}) =dnddf(d)g(dd)g(dn)

= ∑ d ′ = 1 n [ d ′ ∣ n ] ∑ d = 1 n [ d ∣ d ′ ] f ( d ) g ( d ′ d ) g ( n d ′ ) =\overset{n}{\underset{d'=1}\sum}[d'|n]\overset{n}{\underset{d=1}\sum}[d|d']f(d)g(\frac {d'}d)g(\frac n {d'}) =d=1n[dn]d=1n[dd]f(d)g(dd)g(dn)

因为有 d ∣ d ′ , d ′ ∣ n d|d',d'|n dd,dn,显然有 d ∣ n d|n dn
= ∑ d ′ = 1 n [ d ′ ∣ n ] ∑ d = 1 n [ d ∣ n ] [ d ∣ d ′ ] f ( d ) g ( d ′ d ) g ( n d ′ ) =\overset{n}{\underset{d'=1}\sum}[d'|n]\overset{n}{\underset{d=1}\sum}[d|n][d|d']f(d)g(\frac {d'}d)g(\frac n {d'}) =d=1n[dn]d=1n[dn][dd]f(d)g(dd)g(dn)
= ∑ d = 1 n [ d ∣ n ] f ( d ) ∑ d ′ = 1 n [ d ′ ∣ n ] [ d ∣ d ′ ] g ( d ′ d ) g ( n d ′ ) =\overset{n}{\underset{d=1}\sum}[d|n]f(d)\overset{n}{\underset{d'=1}\sum}[d'|n][d|d']g(\frac {d'}d)g(\frac n {d'}) =d=1n[dn]f(d)d=1n[dn][dd]g(dd)g(dn)
= ∑ d ∣ n f ( d ) ∑ d ′ = 1 n [ d ∣ d ′ ] [ d ′ ∣ n ] g ( d ′ d ) g ( n d ′ ) =\overset{}{\underset{d|n}\sum}f(d)\overset{n}{\underset{d'=1}\sum}[d|d'][d'|n]g(\frac {d'}d)g(\frac n {d'}) =dnf(d)d=1n[dd][dn]g(dd)g(dn)
= ∑ d ∣ n f ( d ) ∑ d ′ = 1 ⌊ n d ⌋ [ d ′ ⋅ d ∣ n ] g ( d ′ ) g ( n d ′ ⋅ d ) =\overset{}{\underset{d|n}\sum}f(d)\overset{\left\lfloor\frac n d\right\rfloor}{\underset{d'=1}\sum}[d'\cdot d|n]g({d'})g(\frac n {d'\cdot d}) =dnf(d)d=1dn[ddn]g(d)g(ddn)

前面已经限制过了,一定有 d ∣ n d|n dn,因此艾弗森括号可以除过来:
= ∑ d ∣ n f ( d ) ∑ d ′ = 1 ⌊ n d ⌋ [ d ′ ∣ n d ] g ( d ′ ) g ( n d ′ ⋅ d ) =\overset{}{\underset{d|n}\sum}f(d)\overset{\left\lfloor\frac n d\right\rfloor}{\underset{d'=1}\sum}\left[d'|\frac nd\right]g({d'})g(\frac n {d'\cdot d}) =dnf(d)d=1dn[ddn]g(d)g(ddn)
= ∑ d ∣ n f ( d ) ∑ d ′ ∣ n d ⌊ n d ⌋ g ( d ′ ) g ( n d ′ ⋅ d ) =\overset{}{\underset{d|n}\sum}f(d)\overset{\left\lfloor\frac n d\right\rfloor}{\underset{d'|\frac nd}\sum}g({d'})g(\frac n {d'\cdot d}) =dnf(d)ddndng(d)g(ddn)
= ∑ d ∣ n f ( d ) ∑ d ′ ∣ n d g ( d ′ ) g ( n d ′ ⋅ d ) =\overset{}{\underset{d|n}\sum}f(d)\overset{}{\underset{d'|\frac nd}\sum}g({d'})g(\frac n {d'\cdot d}) =dnf(d)ddng(d)g(ddn)

由上可知证毕。

分配律

f ∗ ( g + h ) = f ∗ g + f ∗ h f*(g+h)=f*g+f*h f(g+h)=fg+fh

分配律很显然。

单位元

此外,定义狄利克雷卷积单位元函数,简称为元函数: ε ( n ) = [ n = 1 ] \varepsilon(n)=[n=1] ε(n)=[n=1]

逆元

若有 f ∗ f − 1 = ε f*f^{-1}=\varepsilon ff1=ε,则称 f f f f − 1 f^{-1} f1互为狄利克雷卷积逆元,记作 f − 1 f^{-1} f1

常用卷积关系

单位元

显然对于任意函数 f f f,都有: f ∗ ε = f f*\varepsilon=f fε=f

常数函数与莫比乌斯函数

常数函数与莫比乌斯函数互为狄利克雷卷积逆元:
μ ∗ 1 = ε \mu*1=\varepsilon μ1=ε

莫比乌斯反演中给出证明。

整除函数与幂函数

I d k ∗ 1 = σ k Id_k*1=\sigma_k Idk1=σk

证明很显然:
I d k ∗ 1 = ∑ d ∣ n d k = σ k Id_k*1=\underset{d|n}\sum d^k=\sigma_k Idk1=dndk=σk

注意到 μ ∗ 1 = ε \mu*1=\varepsilon μ1=ε,因而有 σ k ∗ μ = I d k \sigma_k*\mu=Id_k σkμ=Idk

恒等函数与欧拉函数

φ ∗ 1 = i d \varphi*1=id φ1=id

证明:
p ∈ P p\in\mathbb{P} pP,首先我们证明:
( φ ∗ 1 ) ( p k ) = ∑ d ∣ p k φ ( d ) (\varphi*1)(p^k)=\underset{d|p^k}\sum \varphi(d) (φ1)(pk)=dpkφ(d)
= ∑ i = 0 k φ ( p i ) =\overset{k}{\underset{i=0}\sum}\varphi(p^i) =i=0kφ(pi)
= 1 + ∑ i = 1 k φ ( p i ) =1+\overset{k}{\underset{i=1}\sum}\varphi(p^i) =1+i=1kφ(pi)
= 1 + ∑ i = 1 k ( p − 1 ) p i − 1 =1+\overset{k}{\underset{i=1}\sum}(p-1)p^{i-1} =1+i=1k(p1)pi1
= 1 + ∑ i = 1 k p i − ∑ i = 1 k p i − 1 =1+\overset{k}{\underset{i=1}\sum}p^i-\overset{k}{\underset{i=1}\sum}p^{i-1} =1+i=1kpii=1kpi1
= 1 + ∑ i = 1 k p i − ∑ i = 0 k − 1 p i =1+\overset{k}{\underset{i=1}\sum}p^i-\overset{k-1}{\underset{i=0}\sum}p^{i} =1+i=1kpii=0k1pi
= ∑ i = 0 k p i − ∑ i = 0 k − 1 p i =\overset{k}{\underset{i=0}\sum}p^i-\overset{k-1}{\underset{i=0}\sum}p^{i} =i=0kpii=0k1pi
= p k = I d k ( p ) =p^k=Id_k(p) =pk=Idk(p)

此后我们注意到,两个积性函数的狄利克雷卷积仍然是积性函数,因此可以把 ( φ ∗ 1 ) ( n ) (\varphi*1)(n) (φ1)(n)拆成 n n n的质因子幂次的连乘积的形式,这样立即得证。

QED.

因为有 φ ∗ 1 = i d \varphi*1=id φ1=id,前面说过, 1 , μ 1,\mu 1,μ互为逆元,因此有: φ = i d ∗ μ \varphi=id*\mu φ=idμ,这也就用狄利克雷卷积的方法证明了,欧拉函数是积性函数。(大雾)

φ ∗ 1 = i d \varphi*1=id φ1=id,这事实上证明了 n = ∑ d ∣ n φ ( d ) n=\underset{d|n}{\sum}\varphi(d) n=dnφ(d)

总结

常用:
μ ∗ 1 = ε \mu*1=\varepsilon μ1=ε
i d ∗ μ = φ id*\mu=\varphi idμ=φ
φ ∗ 1 = i d \varphi*1=id φ1=id

不常用:
I d k ∗ 1 = σ k Id_k*1=\sigma_k Idk1=σk

逆元

对于 f f f的逆元 f − 1 f^{-1} f1,则 f ∗ f − 1 = ε f*f^{-1}=\varepsilon ff1=ε,令 n = 1 n=1 n=1,则: f − 1 ( 1 ) = 1 f ( 1 ) f^{-1}(1)=\frac 1 {f(1)} f1(1)=f(1)1,因此逆元存在的必要条件为 f ( 1 ) ≠ 0 f(1)\neq 0 f(1)=0

此外逆元唯一,假设 f ∗ g = ε , f ∗ h = ε f*g=\varepsilon,f*h=\varepsilon fg=ε,fh=ε,则有 f ∗ g = f ∗ h f*g=f*h fg=fh g = h g=h g=h

此外,有 f ∗ f − 1 = ε f*f^{-1}=\varepsilon ff1=ε,若 f f f为积性函数,可知 f − 1 f^{-1} f1为积性函数。

证明一下:
n = a × b , a ⊥ b n=a\times b,a\perp b n=a×b,ab
首先有: ( ( f ∗ f − 1 ) ( a ) ) ( ( f ∗ f − 1 ) ( b ) ) = ε \left(\left(f*f^{-1}\right)(a)\right)\left(\left(f*f^{-1}\right)(b)\right)=\varepsilon ((ff1)(a))((ff1)(b))=ε
则: ∑ x ∣ a f ( x ) f − 1 ( a x ) ∑ y ∣ b f ( y ) f − 1 ( b y ) = ε \underset{x|a}\sum f(x)f^{-1}(\frac a x)\underset{y|b}\sum f(y)f^{-1}(\frac by)=\varepsilon xaf(x)f1(xa)ybf(y)f1(yb)=ε
∑ x ∣ a ∑ y ∣ b f ( x y ) f − 1 ( a x ) f − 1 ( b y ) = ε \underset{x|a}\sum\underset{y|b}\sum f(xy)f^{-1}(\frac a x)f^{-1}(\frac by)=\varepsilon xaybf(xy)f1(xa)f1(yb)=ε

其次有: ( f ∗ f − 1 ) ( a b ) = ε (f*f^{-1})(ab)=\varepsilon (ff1)(ab)=ε
则: ∑ d ∣ a b f ( d ) f − 1 ( n d ) = ε \underset{d|ab}\sum f(d)f^{-1}(\frac n d)=\varepsilon dabf(d)f1(dn)=ε

反向应用引理
∑ x ∣ a ∑ y ∣ b f ( x y ) f − 1 ( a b x y ) = ε \underset{x|a}{\sum}\underset{y|b}\sum f(xy)f^{-1}(\frac {ab}{xy})=\varepsilon xaybf(xy)f1(xyab)=ε

两式画等号:
∑ x ∣ a ∑ y ∣ b f ( x y ) f − 1 ( a x ) f − 1 ( b y ) = ∑ x ∣ a ∑ y ∣ b f ( x y ) f − 1 ( a b x y ) \underset{x|a}\sum\underset{y|b}\sum f(xy)f^{-1}(\frac a x)f^{-1}(\frac by)=\underset{x|a}{\sum}\underset{y|b}\sum f(xy)f^{-1}(\frac {ab}{xy}) xaybf(xy)f1(xa)f1(yb)=xaybf(xy)f1(xyab)

对比系数,则 f − 1 ( a x ) f − 1 ( b y ) = f − 1 ( a b x y ) f^{-1}(\frac a x)f^{-1}(\frac by)=f^{-1}(\frac {ab}{xy}) f1(xa)f1(yb)=f1(xyab)。显然 f − 1 f^{-1} f1是一个积性函数。

易见:若 f ∗ g = h f*g=h fg=h f , h f,h f,h为积性函数,则 g g g为积性函数。

后记

于是皆大欢喜。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值