ToxinPred – 多肽毒性预测、突变设计和理化性质预测

多肽是由多个氨基酸通过肽键连接形成的化合物,是生物体中普遍存在的小分子活性物质,它们作为激素、神经递质、生长因子等参与多种生命活动。近年来,人们对多肽的研究也日渐深入,例如抗菌肽(Antibacterial peptides,ABPs)具有广谱抗菌活性,可以快速杀灭革兰氏阳性菌,革兰氏阴性菌,真菌,寄生虫等。Cecropin类抗菌肽作用于细胞膜,可以形成跨膜离子通道,破坏细胞膜完整性,从而杀死细胞;抗癌肽(Anticancer peptides,ACPs)主要通过诱导细胞凋亡、破坏细胞的膜结构,改变细胞周围或细胞内pH以及增强免疫应答等多种机制来抑制癌细胞增殖。

传统的铂类、紫杉醇类等一线肿瘤治疗药物具有毒副作用大,存在多药耐药等缺点,而癌肽生物活性强,特异性高,对正常细胞的毒性较低,更加高效、安全,并且不易在体内聚集。因此抗癌肽是目前抗肿瘤新药研究的一大热点。

从生物体中获得抗菌肽,抗癌肽正成为一种流行的多肽筛选方法。例如2022年3月,中科院微生物所发表在Nature Biotechnology上的论文Identification of antimicrobial peptides from the human gut microbiome using deep learning(注:该论文也提及了微生信,大家可以找找看),利用深度学习方法,构建了从人类肠道微生物组挖掘潜在新型抗菌肽的模型,总计挖掘并合成了216种潜在的新型抗菌肽,其中83.8%具有抗菌活性。

无论通过何种方法(质谱、预测等),在好不容易拿到多肽序列后,我们都可以对其进行毒性预测,以确保其对生物体没有毒性,然后再对其进行深入研究,若有毒性,我们可以通过对其氨基酸进行突变的方式,模拟出很多的多肽类似物,并进一步进行挑选和过滤。经过查询,我们找到了一个已经存在快10年的多肽毒性预测和突变设计网络服务器 – ToxinPred。

这里,我们就带大家来使用下这个在线工具。

  1. 打开网站

使用浏览器打开https://webs.iiitd.edu.in/raghava/toxinpred/index.html

ToxinPred的主要特征包括:1)设计多肽,利用氨基酸突变设计多肽类似物;2)批量预测多肽是否具有毒性;3)优化多肽序列,找到毒性最小或者最大的多肽;4)预测理化性质。

2,针对一条多肽进行设计

1)点击导航栏的“Design Peptide”,在输入框输入多肽序列,选择参数,包括预测方法,阈值等,然后点击“Run Analysis”按钮。

2.预测和突变设计结果

结果上半部分为所提交的多肽的预测结果,Non-Toxin或者Toxin,以及一些理化性质预测结果。

结果下半部分为以所提交的多肽为基础,对其单个氨基酸进行突变后的预测结果,因此可以用来进行多肽设计。

3,多条多肽批量预测

1)点击导航栏的“Batch submission”,在输入框输入N条多肽序列(fasta格式),选择参数,包括预测方法,阈值等,然后点击“Run Analysis”按钮。

2)预测结果

结果包括了所提交的5条多肽的预测结果:Non-Toxin或者Toxin,以及一些理化性质预测结果。

使用非常简单,需要阅读原文从而深入了解网络工具背后支撑的数据库,算法的读者可以参考原文:In silico Approach for Predicting Toxicity of Peptides and Proteins. In Silico Approach for Predicting Toxicity of Peptides and Proteins | PLOS ONE

微生信助力高分文章,用户183000,谷歌学术3400篇

<think>嗯,用户想知道如何通过计算方法或工具预测多肽的物理化性质或其他特性。首先,我需要回忆一下生物信息学中相关的资源方法。根据引用里的信息,比如引用3提到了蛋白质口袋区预测一些药物设计相关的工具,可能有关联。还有引用4提到的非编码RNA分析,虽然不直接相关,但可能类似的工具可以应用在多肽上。 首先,多肽性质预测可能包括等电点、疏水性、分子量、二级结构等。常见的工具比如ExPASy的ProtParam,这个在引用3中提到的UniProtSwiss-Prot可能相关。用户需要具体的工具名称使用方法。 然后,可能需要考虑一些在线软件,比如PeptideCutter,用于酶切位点预测。还有像I-TASSER这样的结构预测工具,不过引用3里提到的是蛋白质结构数据库,可能需要确认是否有适用于多肽的工具。 另外,药物设计相关的工具如SwissADMEDrugBank可能在药代动力学预测上有用,但多肽的话可能需要特定的工具。比如APD3数据库专门针对抗菌肽,这可能是一个例子。 还有用户可能关心的是如何获取这些工具,是否有在线平台或需要下载。比如CAMP数据库是在线的,而某些工具可能需要本地安装,比如需要Python或R的包。 另外,需要考虑用户的实际应用场景,比如他们是在进行药物开发还是基础研究,这会影响推荐的深度工具的选择。例如,抗菌肽预测可能需要不同的工具组合。 最后,生成相关问题时,应该围绕多肽预测的不同方面,比如具体性质、结构预测、数据库资源、药物开发应用,以及工具的使用挑战等。这样能帮助用户进一步探索。</think>### 多肽性质预测方法及工具 多肽的物理化性质(如等电点、疏水性、分子量)功能特性(如二级结构、抗菌活性)可通过以下生物信息学方法工具进行预测: --- #### **1. 基础物理化性质预测** - **ProtParam (ExPASy)** 输入多肽序列即可计算分子量、等电点、消光系数、氨基酸组成等。 示例: ```python # 使用Biopython调用ProtParam from Bio.SeqUtils.ProtParam import ProteinAnalysis peptide = ProteinAnalysis("ACDEFGHIK") print(peptide.molecular_weight()) # 输出分子量 ``` 支持在线访问:[ExPASy ProtParam](https://web.expasy.org/protparam/)[^3]。 - **PeptideCutter (ExPASy)** 预测多肽在特定蛋白酶或化学试剂下的酶切位点[^3]。 --- #### **2. 二级结构与功能预测** - **PSIPRED** 基于序列预测多肽的二级结构(α-螺旋、β-折叠等)[^3]。 - **APD3 (Antimicrobial Peptide Database)** 专用于抗菌肽的预测,包含活性、毒性理化性质分析模块。 --- #### **3. 相互作用与药代动力学** - **SwissADME** 预测多肽的渗透性、溶解性药物相似性,适用于药物开发。 - **HMMTOP** 预测多肽的跨膜螺旋结构,用于膜蛋白功能研究。 --- #### **4. 综合工具与数据库** - **UniProt** 提供多肽序列的功能注释理化性质检索[^3]。 - **CAMP (Collection of Antimicrobial Peptides)** 整合实验验证的抗菌肽数据及预测工具[^3]。 --- #### **应用场景** - **药物设计**:通过SwissTargetPrediction预测多肽潜在靶点。 - **功能研究**:利用InterPro分析多肽的结构域功能模体[^2]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值