go kegg_从基因名到GO注释一步到位

本文介绍了如何利用Y叔的clusterProfiler包进行基因集的GO和KEGG数据库富集分析。针对多组基因集,不仅展示了如何分别计算上下调基因的注释,还探讨了不同筛选参数的影响。文章推荐了几个知名的在线富集分析工具,并强调了Y叔提供的丰富可视化方法。最后,作者推荐了生信技能树的相关课程资源。
摘要由CSDN通过智能技术生成
大部分的生物学高通量数据处理后都是得到基因集,不管是上调下调表达基因集,还是共表达的模块基因集,都是需要注释到生物学功能数据库来看基因集的意义,最常见的是 GO/KEGG数据库啦,还有很多其它在 MsigDB的,比如 reactome和biocarta数据库等等。

这样分析起来就很麻烦,尤其是GO数据库,还有BP,CC,MF的区别,这个时候推荐使用Y叔的神器:

library(ggplot2)
library(stringr)
library(clusterProfiler)
# 我这里演示的是brown_down_gene,是WGCNA的一个模块,基因集
# 因为表达矩阵是symbol,所以需要转为ENTREZID,才能走clusterProfiler的函数。
gene.df <- bitr(brown_down_gene$symbol, fromType="SYMBOL",
                toType="ENTREZID", 
                OrgDb = "org.Hs.eg.db")
go <- enrichGO(gene = gene.df$ENTREZID, OrgDb = "org.Hs.eg.db", ont="all")
barplot(go, split="ONTOLOGY")+ facet_grid(ONTOLOGY~., scale="free")

会得到如下所示的图,当然,理解起来需要耗费

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值