KEGG通路的从属/注释信息如何获取

富集分析经常做,之前只知道GO term有从上到下的层次关系,今天才知道KEGG pathway也有类似的分层关系。

起因是我准备更新一下自己的kegg富集结果展示图,之前一直画的这种图,略显朴素了。 alt 正好搜到了这张图,还挺好看的(主要是配色很清新

https://doi.org/10.1016/j.phymed.2021.153714
https://doi.org/10.1016/j.phymed.2021.153714

这张图并不难(等有空把代码整理出来发给大家),可是这个「kegg pathway annotation」我真没见过呀!去官网看了看,能找到,但没法下载

https://www.genome.jp/kegg/pathway.html
https://www.genome.jp/kegg/pathway.html

在朋友圈求助后,费了很大劲才把这个问题解决。中间好几个小伙伴都很热心地给了我帮助,感谢他们!

以下是我整理的KEGG pathway annotation文件的网盘链接,用到的代码数据也在里面,想改善一下kegg富集图的朋友可以看看。

链接:https://pan.baidu.com/s/18pwYZGGZSuk2_LGW8_nQFQ 提取码:ihyn (PS: 觉得有用可以给我本期推送的第1篇推文点个赞呀,谢谢了!)

最终能得到这个表格
最终能得到这个表格

整理这个文件的思路如下

  1. 浏览器打开这个网页(https://www.genome.jp/kegg/pathway.html),然后查看网页源代码(一般是鼠标右键),就能看到这个:
先不要被它吓到,后面的信息提取都是基于这些字符串
先不要被它吓到,后面的信息提取都是基于这些字符串
  1. 然后复制粘贴到一个文本文件kegg_html.txt,删掉前188行左右,后17行左右(删掉的这些行明显不含有用信息),得到kegg_html_copy.txt

  2. 然后运行我编写的代码pre.R就能得到最终表格了

library(tidyverse)
tmp1=readLines("kegg_html_copy.txt")

tmp2=c()
for (li in 1:length(tmp1)) {
  if(str_detect(tmp1[li],">[0-9]")) {
    tmp2=append(tmp2,tmp1[li])
  }
}

###
big_anno=""
small_anno=""
final_lines=c()
for (li in 1:length(tmp2)) {
  if (str_detect(tmp2[li],">[0-9]\\. ")) {
    tmp_anno=str_extract(tmp2[li],">.*<")
    tmp_anno=str_split(tmp_anno,"\\. ")[[1]][2]
    tmp_anno=str_split(tmp_anno,"<")[[1]][1]
    big_anno=tmp_anno
  } else if (str_detect(tmp2[li],">[0-9]\\.[0-9]{1,2} ")) {
    tmp_anno2=str_extract(tmp2[li],">.*<")
    tmp_anno2=str_replace(tmp_anno2,"^>[0-9]\\.[0-9]{1,2} ","")
    tmp_anno2=str_split(tmp_anno2,"<")[[1]][1]
    small_anno=tmp_anno2
  } else if (str_detect(tmp2[li],">[0-9]{5}")){
    element1=str_extract(tmp2[li],">[0-9]{5}")
    element1=str_split(element1,">")[[1]][2]
    
    if (!str_detect(tmp2[li],"hsa\\+pathogen")) {
      element2=str_extract(tmp2[li],"pathway\\/[a-zA-Z]{2,4}[0-9]{5}")
      element2=str_split(element2,"\\/")[[1]][2]
      
      element3=str_extract(tmp2[li],"pathway.*?<"#非贪婪匹配
      element3=str_extract(element3,">.*<")
      element3=str_split(element3,">")[[1]][2]
      element3=str_split(element3,"<")[[1]][1]
    } else {
      element2="organism:hsa+pathogen"
      element3=str_extract(tmp2[li],"hsa\\+pathogen.*?<"#非贪婪匹配
      element3=str_extract(element3,">.*<")
      element3=str_split(element3,">")[[1]][2]
      element3=str_split(element3,"<")[[1]][1]
    }
    
    tmp_line=paste(as.character(element1),element2,element3,big_anno,small_anno,sep = ";")
    final_lines=append(final_lines,tmp_line)
  }else{
    print(tmp2[li])
  }
}

###
final_df=as.data.frame(final_lines)
colnames(final_df)="V1"
final_df=final_df%>%apply(1, function(x){as.data.frame(str_split(x,";")[[1]])})
final_df=as.data.frame(final_df)
final_df=as.data.frame(t(final_df))
rownames(final_df)=NULL
colnames(final_df)=NULL
colnames(final_df)=c("ID","Pathway Identifier","Pathway","big annotion","small annotion")

###
library(xlsx)
write.xlsx(final_df,file = "kegg_info.xlsx",col.names = T,row.names = F)
在生物信息学领域,基因功能的注释和分析是一个复杂但至关重要的过程,其中GO数据库和KEGG通路数据库扮演了核心的角色。首先,使用GO数据库进行基因功能注释时,你需要将你的基因列表与GO的三个核心本体(分子功能、生物过程、细胞成分)进行比对。这可以通过多种工具和在线服务来完成,如DAVID、GOrilla或WebGestalt等。这些工具可以帮助你识别你的基因列表中哪些功能、过程和细胞组件被富集,并进行功能富集分析,以发现哪些生物学过程在你的实验条件下特别活跃或受到抑制。 参考资源链接:[基因注释与功能分析:GO数据库与KEGG通路](https://wenku.csdn.net/doc/15qu6bsnnp) 接着,要进行KEGG通路分析,你可以将从GO分析中获得的基因信息用于KEGG通路的映射。KEGG提供了一个丰富的平台,可以将基因映射到它们参与的代谢通路和信号通路上。你可以使用KEGG的API或者在线分析工具,如KEGGMapper或GSEA(基因集富集分析),来分析你的基因列表在特定通路中的富集情况。例如,你可以发现你的基因列表是否在癌症通路或糖尿病通路中表现出显著的富集,从而提供对疾病机制的洞察。 在整个过程中,你需要处理大量的数据,并确保你的分析结果具有统计学意义和生物学解释的合理性。因此,熟悉相关的统计方法和生物信息学分析工具是非常必要的。此外,由于基因功能注释通路分析的结果往往高度依赖于所使用的数据库版本和注释标准,因此保持对GO和KEGG最新更新的关注也是很重要的。通过这种方法,你可以有效地挖掘基因数据,揭示生物学过程,并对相关的生物现象进行深入的理解。为了更全面地掌握这些技能,我推荐你查阅《基因注释与功能分析:GO数据库与KEGG通路》这本书。该书不仅详细介绍了GO和KEGG的使用方法,还包含了实际的项目案例分析,能够帮助你在生物信息学研究中有效地运用这些工具。 参考资源链接:[基因注释与功能分析:GO数据库与KEGG通路](https://wenku.csdn.net/doc/15qu6bsnnp)
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值