大家好,我是生信技能树学徒,前面我们带来了大量的表达数据挖掘实战演练,但是TCGA数据库之丰富程度,值得我们花费多年时间继续探索,现在带来的是突变全景图,如果你对之前的教程感兴趣,可以点击学习 菜鸟团(周一数据挖掘专栏)成果展
就是上面这张全景, 我重复出来的是下面这个样子 。 文章标题: Comprehensive and Integrative Genomic Characterization of Hepatocellular Carcinoma
链接: https://www.cell.com/cell/fulltext/S0092-8674(17)30639-6
数据准备绘制全景图需要maf格式的突变信息文件以及临床信息文件。
还是从XENA上进行下载
需要注意,这里储存突变信息的文件需要是maf格式,和我们之前根据是否存在该基因的突变对样本进行分类的文件不同。
处理数据-R-maftools1. 读取临床信息
tumor_type "LIHC"
Rdata_file './data/', tumor_type, '.phenoData.Rdata', sep = '')
if (!file.exists( Rdata_file )) {
phenoData header = T,
sep = '\t',
quote = '' )
rownames( phenoData ) 1]
colnames( phenoData )[1] "Tumor_Sample_Barcode"
phenoData[1:5, 1:5]
save( phenoData, file = Rdata_file )
}else{
load( Rdata_file )
}
这里是遇到的第一个坑:我们看一下临床信息的“Tumor_Sample_Barcode”,是16位的短ID,但是后来在使用read.maf读取maf文件时,发现下载的maf文件的“Tumor_Sample_Barcode”是长ID,就存在了两个ID不匹配,从而导致临床信息被直接略过了。我去github上翻看了一下作者的代码,read.maf也可以接受数据框。所以就把maf文件先读取进来,处理一下ID。
2. 读取maf文件
maf data.table::as.data.table(read.csv(file = "./raw_data/TCGA.LIHC.mutect.DR-10.0.somatic.maf.gz",
header = TRUE, sep = '\t',
stringsAsFactors = FALSE, comment.char = "#"))
maf$Tumor_Sample_Barcode 1, 16)
require(maftools)
## 作者用到了HBV和HCV的临床信息
phenoData$HBV 'Hepatitis B', 'HBV', 'others')
phenoData$HCV 'Hepatitis C', 'HCV', 'others')
phenoData[phenoData$neoplasm_histologic_grade == ""] 'no_reported'
## 这个函数不强求直接读取文本文件,也可以读取数据变量
laml read.maf(maf, clinicalData = phenoData)
laml
laml@data 'PASS', laml@data$FILTER), ]
接下来绘图遇到了第二个坑,关于factor的问题,以及颜色的对应关系的列表如何制作,绘图的函数怎么调用颜色信息。
3. 绘图
library(RColorBrewer)
png(paste0('oncoplot_top26_phone', tumor_type, '.png'), res = 150,
width = 1500, height = 1080)
## 文章中这些driver gene是Mutsig挑选出来的,文章里面提供了,就直接使用了这个数据
genes = c("TP53", "CTNNB1", "ALB", "AXIN1", "BAP1", "KEAP1", "NFE2L2", "LZTR1", "RB1", "PIK3CA", "RPS6KA3", "AZIN1", "KRAS", "IL6ST", "RP1L1", "CDKN2A", "EEF1A1", "ARID2", "ARID1A", "GPATCH4", "ACVR2A", "APOB", "CREB3L3", "NRAS", "AHCTF1", "HIST1H1C")
## 为突变类型的分类数据设置颜色
variantClass col = c(RColorBrewer::brewer.pal(n = 4, name = 'Set1'),
RColorBrewer::brewer.pal(n = 5, name = 'Set2'))
names(col) = variantClass
col
## 绘图的时候我们使用的数据是laml,临床信息在clinical.data里面
## 绘图函数要求这些设置颜色的数据是factor,所以我们要把加到图上的
## 临床信息转变为因子
laml@clinical.data$neoplasm_histologic_grade as.factor(laml@clinical.data$neoplasm_histologic_grade)
gradecolors = RColorBrewer::brewer.pal(n = 4,name = 'Spectral')
names(gradecolors) = levels(laml@clinical.data$neoplasm_histologic_grade)
laml@clinical.data$race.demographic as.factor(laml@clinical.data$race.demographic)
Racecolors = RColorBrewer::brewer.pal(n = 5,name = 'Spectral')
names(Racecolors) = levels(laml@clinical.data$race.demographic)
laml@clinical.data$gender.demographic as.factor(laml@clinical.data$gender.demographic)
Gendercolors = c("#b3e2cd", "#fb9a99")
names(Gendercolors) = levels(laml@clinical.data$gender.demographic)
laml@clinical.data$HBV as.factor(laml@clinical.data$HBV)
HBVcolors = c("#ffffb3", "#e31a1c")
names(HBVcolors) = levels(laml@clinical.data$HBV)
laml@clinical.data$HCV as.factor(laml@clinical.data$HCV)
HCVcolors = c("#1b9e77", "#fc8d62")
names(HCVcolors) = levels(laml@clinical.data$HCV)
## 绘图函数需要一个list
phecolors = list(neoplasm_histologic_grade = gradecolors,
race.demographic = Racecolors,
gender.demographic = Gendercolors,
HBV = HBVcolors,
HCV = HCVcolors)
## clinicalFeatures是从laml@clinical.data里面挑取数据,所以
## 一定要是laml@clinical.data里面的列名
oncoplot(maf = laml,
colors = col,
bgCol = "#ebebeb", borderCol = "#ebebeb",
genes = genes, GeneOrderSort = F, keepGeneOrder = T,
fontSize = 7 , legendFontSize = 7,
annotationFontSize = 7,
annotationTitleFontSize = 7,
sortByMutation = T,
showTumorSampleBarcodes = F,
annotationColor = phecolors,
clinicalFeatures = c("neoplasm_histologic_grade",
"race.demographic",
"gender.demographic",
"HBV",
"HCV"))
dev.off()
如果你对上面的代码完全无法理解,那么你可能需要下面的课程:
■ ■ ■
生信技能树(爆款入门培训课)全国巡讲约你
生信技能树(爆款入门培训课)巡讲第一站-重庆 (已结束)
生物信息学全国巡讲之粤港澳大湾区专场 (已结束)
生信技能树(爆款入门培训课)巡讲第二站-济南 (已结束)
生信技能树(爆款入门培训课)巡讲-千呼万唤进北京(已结束)
生信技能树(爆款入门培训课)巡讲-广州和上海(已结束)
生信技能树(爆款入门培训课)巡讲-郑州和西安(火热报名ing)