【数理知识】极坐标与笛卡尔坐标转换

极坐标与笛卡尔坐标

笛卡尔坐标系

极坐标系

转换

从一个系统转换到另一系统,我们用这个三角形:

在这里插入图片描述

笛卡尔坐标转换为极坐标

当我们知道一点的笛卡尔坐标 ( x , y ) (x,y) (x,y) 想转换成极坐标 ( r , θ ) (r,θ) (r,θ),我们需要解一个有两条已知边的直角三角形。

例子: (12,5) 的极坐标是什么?
在这里插入图片描述
用勾股定理去计算长的一边(斜边):

r 2 = 122 + 52 r = √ ( 122 + 52 ) r = √ ( 144 + 25 ) r = √ ( 169 ) = 13 \begin{aligned} &r^2 = 122 + 52\\ &r = √ (122 + 52)\\ &r = √ (144 + 25)\\ &r = √ (169) = 13 \end{aligned} r2=122+52r=(122+52)r=(144+25)r=(169)=13

用正切函数去计算角度:

t a n ( θ ) = 5 / 12 θ = t a n − 1 ( 5 / 12 ) = 22.6 ° ( 精 确 到 一 位 小 数 ) \begin{aligned} &tan( θ ) = 5 / 12\\ &θ = tan-1 ( 5 / 12 ) = 22.6° (精确到一位小数)\\ \end{aligned} tan(θ)=5/12θ=tan1(5/12)=22.6°

答案:(12,5) 的极坐标是 (13, 22.6°)。

所以,笛卡尔坐标 ( x , y ) (x,y) (x,y) 转换为极坐标 ( r , θ ) (r,θ) (r,θ):

  • r = ( x 2 + y 2 ) r = \sqrt{ ( x^2 + y^2 )} r=(x2+y2)
  • θ = tan ⁡ − 1 ( y / x ) θ = \tan^{-1} ( y / x ) θ=tan1(y/x)

注意:当 x 或 y 是负数时,计算器可能得到错误的 tan-1 () 的值……继续看下去。

极坐标转换为笛卡尔坐标

当我们知道一点的极坐标 ( r , θ ) (r, θ) (r,θ),想转换为笛卡尔坐标 ( x , y ) (x,y) (x,y),我们需要解一个有已知斜边和角度的直角三角形:

例子:(13, 22.6°)的笛卡尔坐标是什么?

在这里插入图片描述
x x x 的余弦函数: cos ⁡ ( 22.6 ° ) = x / 13 \cos( 22.6 °) = x / 13 cos(22.6°)=x/13

重排及解:
x = 13 × c o s ( 22.6 ° ) x = 13 × 0.923 x = 12.002... \begin{aligned} &x = 13 × cos( 22.6 °)\\ &x = 13 × 0.923\\ &x = 12.002...\\ \end{aligned} x=13×cos(22.6°)x=13×0.923x=12.002...

y y y 的正弦函数: sin ⁡ ( 22.6 ° ) = y / 13 \sin( 22.6 °) = y / 13 sin(22.6°)=y/13

重排及解:
y = 13 × s i n ( 22.6 ° ) y = 13 × 0.391 y = 4.996 … … \begin{aligned} &y = 13 × sin( 22.6 °)\\ &y = 13 × 0.391\\ &y = 4.996……\\ \end{aligned} y=13×sin(22.6°)y=13×0.391y=4.996

答案: (13, 22.6°) 的笛卡尔坐标是差不多 (12, 5)。

所以,极坐标 ( r , θ ) (r,θ) (r,θ) 转换为笛卡尔坐标 ( x , y ) (x,y) (x,y)

  • x = r × cos ⁡ ( θ ) x = r × \cos( θ ) x=r×cos(θ)
  • y = r × sin ⁡ ( θ ) y = r × \sin( θ ) y=r×sin(θ)

但如果 X 和 Y 是负数呢?

总结

极坐标 ( r , θ ) (r,θ) (r,θ) 转换为笛卡尔坐标 ( x , y ) (x,y) (x,y)

  • x = r × cos ⁡ ( θ ) x = r × \cos( θ ) x=r×cos(θ)
  • y = r × sin ⁡ ( θ ) y = r × \sin( θ ) y=r×sin(θ)

笛卡尔坐标 ( x , y ) (x,y) (x,y) 转换为极坐标 ( r , θ ) (r,θ) (r,θ):

  • r = ( x 2 + y 2 ) r = \sqrt{ ( x^2 + y^2 )} r=(x2+y2)
  • θ = tan ⁡ − 1 ( y / x ) θ = \tan^{-1} ( y / x ) θ=tan1(y/x)

tan ⁡ − 1 ( y / x ) \tan^{-1}( y/x ) tan1(y/x) 可能需要调整:

象限 I: 用 计算器的值
象限 II: 加 180°
象限 III: 加 180°
象限 IV: 加 360°

From: 极坐标与笛卡尔坐标

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Zhao-Jichao

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值