极坐标与笛卡尔坐标
笛卡尔坐标系
极坐标系
转换
从一个系统转换到另一系统,我们用这个三角形:
笛卡尔坐标转换为极坐标
当我们知道一点的笛卡尔坐标 ( x , y ) (x,y) (x,y) 想转换成极坐标 ( r , θ ) (r,θ) (r,θ),我们需要解一个有两条已知边的直角三角形。
例子: (12,5) 的极坐标是什么?
用勾股定理去计算长的一边(斜边):
r 2 = 122 + 52 r = √ ( 122 + 52 ) r = √ ( 144 + 25 ) r = √ ( 169 ) = 13 \begin{aligned} &r^2 = 122 + 52\\ &r = √ (122 + 52)\\ &r = √ (144 + 25)\\ &r = √ (169) = 13 \end{aligned} r2=122+52r=√(122+52)r=√(144+25)r=√(169)=13
用正切函数去计算角度:
t a n ( θ ) = 5 / 12 θ = t a n − 1 ( 5 / 12 ) = 22.6 ° ( 精 确 到 一 位 小 数 ) \begin{aligned} &tan( θ ) = 5 / 12\\ &θ = tan-1 ( 5 / 12 ) = 22.6° (精确到一位小数)\\ \end{aligned} tan(θ)=5/12θ=tan−1(5/12)=22.6°(精确到一位小数)
答案:(12,5) 的极坐标是 (13, 22.6°)。
所以,笛卡尔坐标 ( x , y ) (x,y) (x,y) 转换为极坐标 ( r , θ ) (r,θ) (r,θ):
- r = ( x 2 + y 2 ) r = \sqrt{ ( x^2 + y^2 )} r=(x2+y2)
- θ = tan − 1 ( y / x ) θ = \tan^{-1} ( y / x ) θ=tan−1(y/x)
注意:当 x 或 y 是负数时,计算器可能得到错误的 tan-1 () 的值……继续看下去。
极坐标转换为笛卡尔坐标
当我们知道一点的极坐标 ( r , θ ) (r, θ) (r,θ),想转换为笛卡尔坐标 ( x , y ) (x,y) (x,y),我们需要解一个有已知斜边和角度的直角三角形:
例子:(13, 22.6°)的笛卡尔坐标是什么?
用
x
x
x 的余弦函数:
cos
(
22.6
°
)
=
x
/
13
\cos( 22.6 °) = x / 13
cos(22.6°)=x/13
重排及解:
x
=
13
×
c
o
s
(
22.6
°
)
x
=
13
×
0.923
x
=
12.002...
\begin{aligned} &x = 13 × cos( 22.6 °)\\ &x = 13 × 0.923\\ &x = 12.002...\\ \end{aligned}
x=13×cos(22.6°)x=13×0.923x=12.002...
用 y y y 的正弦函数: sin ( 22.6 ° ) = y / 13 \sin( 22.6 °) = y / 13 sin(22.6°)=y/13
重排及解:
y
=
13
×
s
i
n
(
22.6
°
)
y
=
13
×
0.391
y
=
4.996
…
…
\begin{aligned} &y = 13 × sin( 22.6 °)\\ &y = 13 × 0.391\\ &y = 4.996……\\ \end{aligned}
y=13×sin(22.6°)y=13×0.391y=4.996……
答案: (13, 22.6°) 的笛卡尔坐标是差不多 (12, 5)。
所以,极坐标 ( r , θ ) (r,θ) (r,θ) 转换为笛卡尔坐标 ( x , y ) (x,y) (x,y):
- x = r × cos ( θ ) x = r × \cos( θ ) x=r×cos(θ)
- y = r × sin ( θ ) y = r × \sin( θ ) y=r×sin(θ)
但如果 X 和 Y 是负数呢?
总结
极坐标 ( r , θ ) (r,θ) (r,θ) 转换为笛卡尔坐标 ( x , y ) (x,y) (x,y):
- x = r × cos ( θ ) x = r × \cos( θ ) x=r×cos(θ)
- y = r × sin ( θ ) y = r × \sin( θ ) y=r×sin(θ)
笛卡尔坐标 ( x , y ) (x,y) (x,y) 转换为极坐标 ( r , θ ) (r,θ) (r,θ):
- r = ( x 2 + y 2 ) r = \sqrt{ ( x^2 + y^2 )} r=(x2+y2)
- θ = tan − 1 ( y / x ) θ = \tan^{-1} ( y / x ) θ=tan−1(y/x)
tan − 1 ( y / x ) \tan^{-1}( y/x ) tan−1(y/x) 可能需要调整:
象限 I: 用 计算器的值
象限 II: 加 180°
象限 III: 加 180°
象限 IV: 加 360°
From: 极坐标与笛卡尔坐标