【数理知识】方程一阶二阶及常用词语含义

方程一阶二阶及常用词语含义

未知数的个数叫做元,如:一元方程、二元方程…

未知数的最高次项微分次数,如:一阶微分方程、二阶微分方程

线性

线性:量与量之间按比例、成直线的关系;一阶导数为常数的函数

非线性:不是线性的

对于控制

仅含有以下部分,不含其他项及常数项

a n d n c ( t ) d t n + a n − 1 d n − 1 c ( t ) d t n − 1 + a n − 2 d n − 2 c ( t ) d t n − 2 + ⋯ + a 1 d c ( t ) d t = b m d m r ( t ) d t m + b m − 1 d m − 1 r ( t ) d t m − 1 + b m − 2 d m − 2 r ( t ) d t m − 2 + ⋯ + b 1 d r ( t ) d t , m < n \begin{aligned} &a_{n}\frac{d^{n}c(t)}{dt^{n}} + a_{n-1}\frac{d^{n-1}c(t)}{dt^{n-1}} + a_{n-2}\frac{d^{n-2}c(t)}{dt^{n-2}} + \dots + a_{1}\frac{dc(t)}{dt} =\\ &b_{m}\frac{d^{m}r(t)}{dt^{m}} + b_{m-1}\frac{d^{m-1}r(t)}{dt^{m-1}} + b_{m-2}\frac{d^{m-2}r(t)}{dt^{m-2}} + \dots + b_1\frac{dr(t)}{dt}, \quad m<n \end{aligned} andtndnc(t)+an1dtn1dn1c(t)+an2dtn2dn2c(t)++a1dtdc(t)=bmdtmdmr(t)+bm1dtm1dm1r(t)+bm2dtm2dm2r(t)++b1dtdr(t),m<n

那么就是线性的

对于高等数学

阶:微分量的次数
线性:微分量和因变量的关系

对于线性代数

阶:行列式的一个量化单位,表示行数和列数
线性:矩阵和空间的一种数量关系

(关于微分方程的术语)
简单的说阶就是指的微分方程的微分量(dy/dx)的次数是几次的,

线性非线性是说微分量与因变量(y)之间的关系是不是线性关系。

你如果有书的话可以看看这部分内容,仅仅参考他们的标准形式就成了!因为每种微分方程只有一种形式。

微分方程

微分方程有很多种,有可分离变量的,有齐次方程,有一阶常系数齐次微分方程,有一阶常系数非齐次,二阶常系数齐次,伯努利方程……

这些都是具体类型,大类就是一阶线性,一阶非线性,二阶线性等等

下面以常见的一阶线性微分方程举例
一阶线性微分方程的标准形式为
dy/dx + yP(x) = Q(x)
形如上式的微分方程都叫做一阶线性微分方程,反之不是。

如果Q(x)=0那么上述方程称为一阶线性齐次微分方程,反之就叫一阶线性非齐次微分方程。
如:
dy/dx = y + x ^ 2
dy/dt = x * Sint + t ^ 2
他们都是符合上式的一节线性微分方程
y * y’ -2*xy = 3
y’ - Cosy = 1
他们不符合一阶线性微分方程的标准形式,所以不是
伯努利方程的标准形式
dy/dx + P(x)*y = Q(x) * y ^ n
凡是符合上述形式的都叫伯努利方程

仔细阅读一下课本上的定义,不要看很多例子,就把我定义既可区分。
解释都很清楚易懂!!!!
如果是线性代数的话阶是指行列式的行数列数。因为行列式是一组数
1 2 3 4
2 3 4 5
1 2 1 1
4 3 2 5
用一个大括号括起来的。上边的行列式一共4行4列所以叫4阶行列式。
8 3 3
1 6 4
4 9 0
用一个打括号括起来,3行*3列 叫3阶行列式

也就是说行列式行数=列数=阶数明白了吗?

线性关系体现在矩阵里,以及空间中。是他们之间的一种数性关系。体现在他们之间有一定数量,空间上的关系,这种关系可以通过一个数学表达式或者空间向量统一的表达。

线性也可以指线性运算,比如:
5A + 43B - 4C + 21F = N + F - E
上式仅仅包含数乘和加减所以叫线性表达式,他的运算可称为线性运算。

如果含有除数乘和加减以外的运算就不能成为线性运算了!

From: 高等数学问题 什么是 一阶 二阶 线性,非线性.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Zhao-Jichao

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值