在当今快速发展的人工智能领域,特别是自然语言处理(NLP)和大语言模型(LLMs)的应用中,创新的编程框架层出不穷。DSPy,即声明性自我优化语言程序,正是这样一款引人瞩目的新工具。Cobus Greyling 在其文章《An Introduction To DSPy》中深入探讨了 DSPy 的设计理念、工作原理以及与其他框架如 LangChain 和 LlamaIndex 的对比。
🔍 DSPy 的核心理念
DSPy 的首要目标是将程序流与提示(prompt)分离,同时根据关键指标优化提示。这样的设计理念使得用户在定义需求时,不需要深入了解如何实现这些需求。用户只需描述“要做什么”,DSPy 将在幕后负责“如何去做”。这意味着,用户可以通过一种被称为“签名”的新语法,简洁地表达任务需求,而不必担心底层的提示工程。
例如,用户可以用以下方式定义一个简单的问答任务:
qa = dspy.Predict(