DeepSeek接入本地知识库!

无论大模型能力有多强,在回答人类提问时或多或少都会存在胡说八道的情况,也就是我们所说的幻觉(Hallucination)。这段时间爆火的DeepSeek当然也会存在这类问题。

特别是垂直领域的大模型应用,对于模型回答的准确率要求非常高,因为存在幻觉问题,单纯依靠大模型难以满足使用需求,所以我们一般会通过检索增强生成(Retrieval-Augmented Generation, RAG)技术来缓解大模型幻觉,提高检索的召回率。

RAG是一种结合了信息检索和大模型(LLM)的技术,用于构建更强大和准确的问答或生成系统。RAG通过将大模型与外部知识库相结合,可以动态检索相关信息并利用生成模型对查询进行更准确的回答。关于如何构建RAG可参考制作个人的第一个RAG demo!

那么如何将DeepSeek与本地的个人知识库链接在一起呢?其实也不难,我们可以借助RAGFlow这样的开源工具来搭建自己的本地知识库并给使用大模型进行有效检索。

RAGFlow是一个基于深度文档理解的开源RAG引擎。它能为任何规模的企业提供简化的RAG工作流程,并结合LLM提供真实的问题解答功能,并从各种复杂格式的数据中获得有理有据的引文支持。

RAGFlow本地部署方式也非常简单,以windows环境为例,我们可以借助于docker来直接部署。首先clone一下RAGFlow仓库,然后进入到目录:

$ git clone https://github.com/infiniflow/ragflow.git
$ cd ragflow
### DeepSeek 接入本地知识库的方法教程 #### 一、准备工作 为了成功将DeepSeek接入本地化的知识库中,需先完成一些必要的准备。这包括但不限于安装所需的依赖环境以及获取API秘钥等前置操作[^4]。 #### 二、下载并配置Cherry Studio 对于希望简化这一过程的用户来说,可以从官方渠道下载名为Cherry Studio的应用程序来辅助设置流程。此应用提供了图形界面指导用户顺利完成后续步骤,比如申请和绑定API密钥等工作[^3]。 #### 三、选择合适的嵌入模型 当一切就绪之后,则要挑选适合自己的嵌入式AI模型版本——例如这里提到的是满血版DeepSeek。不同的选项可能会影响最终性能表现及特性支持情况,在做决定前应当充分考虑实际需求和个人偏好因素。 #### 四、创建与初始化知识库 接下来就是构建属于自己的个性化数据库了。按照指示一步步建立新的知识库实例,并对其进行初步设定;确保所选平台能够良好兼容已选定好的各项组件和服务接口标准。 #### 五、测试连接稳定性 在正式投入使用之前务必先行验证整个系统的连通性和响应速度等方面的表现状况。可以通过简单的命令行指令或是借助专门开发出来的工具来进行这项检测活动,以此确认各部分之间能否正常协作交流无误[^1]。 ```bash curl http://localhost:port/test_endpoint -X GET ``` #### 六、实现双向交互能力 为了让DeepSeek不仅限于读取信息还要具备修改权限的话,就需要进一步调整授权级别并对相应API端点做出适当开放处理。具体做法会依据选用的具体笔记软件而有所差异,但通常涉及到身份认证机制的设计实施等内容[^2]。 #### 七、推荐的知识库/笔记软件 针对想要把DeepSeek同某些特定类型的文档管理系统相结合的需求场景下,建议优先考察那些已经公开声明过对其它第三方插件友好型的产品线。像Notion, Evernote这类广受好评的选择或许值得尝试看看是否能满足预期目标。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值