无论大模型能力有多强,在回答人类提问时或多或少都会存在胡说八道的情况,也就是我们所说的幻觉(Hallucination)。这段时间爆火的DeepSeek当然也会存在这类问题。
特别是垂直领域的大模型应用,对于模型回答的准确率要求非常高,因为存在幻觉问题,单纯依靠大模型难以满足使用需求,所以我们一般会通过检索增强生成(Retrieval-Augmented Generation, RAG)技术来缓解大模型幻觉,提高检索的召回率。
RAG是一种结合了信息检索和大模型(LLM)的技术,用于构建更强大和准确的问答或生成系统。RAG通过将大模型与外部知识库相结合,可以动态检索相关信息并利用生成模型对查询进行更准确的回答。关于如何构建RAG可参考制作个人的第一个RAG demo!
那么如何将DeepSeek与本地的个人知识库链接在一起呢?其实也不难,我们可以借助RAGFlow这样的开源工具来搭建自己的本地知识库并给使用大模型进行有效检索。
RAGFlow是一个基于深度文档理解的开源RAG引擎。它能为任何规模的企业提供简化的RAG工作流程,并结合LLM提供真实的问题解答功能,并从各种复杂格式的数据中获得有理有据的引文支持。
RAGFlow本地部署方式也非常简单,以windows环境为例,我们可以借助于docker来直接部署。首先clone一下RAGFlow仓库,然后进入到目录:
$ git clone https://github.com/infiniflow/ragflow.git
$ cd ragflow