李群与李代数二(求导与扰动模型)

BCH公式与近似公式(Baker-Campbell-haudsorff)

给出了李代数指数映射乘积的完整公式:
[ , ] : 为 李 括 号 [ ,]:为李括号 [,]:
l n ( e A e B ) = A + B + 1 2 [ A , B ] + 1 12 [ A , [ A , B ] ] − 1 12 [ B , [ A , B ] ] + . . . ln(e^{A}e^{B})=A+B+\frac{1}{2}[A,B]+\frac{1}{12}[A,[A,B]]-\frac{1}{12}[B,[A,B]]+... ln(eAeB)=A+B+21[A,B]+121[A,[A,B]]121[B,[A,B]]+...
ϕ 1 , ϕ 2 \phi_1,\phi_2 ϕ1,ϕ2为小量时:可以近似得到两个模型
ϕ = θ ∗ u \phi=\theta*u ϕ=θu
l n ( e ϕ 1 × e ϕ 2 × ) ∨ ≈ { J l ( θ 2 ) − 1 θ 1 + θ 2 左 乘 模 型 J R ( θ 1 ) − 1 θ 2 + θ 1 右 乘 模 型 ln(e^{\phi_1×}e^{\phi_2×})^\vee \approx \begin{cases} J_l(\theta_2)^{-1}\theta_1+\theta_2&左乘模型\\ J_R(\theta_1)^{-1}\theta_2+\theta_1&右乘模型\\ \end{cases} ln(eϕ1×eϕ2×){Jl(θ2)1θ1+θ2JR(θ1)1θ2+θ1
J l ( θ ) = J r ( − θ ) = s i n θ θ I + ( 1 − s i n θ θ ) u ∗ u T + 1 − c o s θ θ u × J_l(\theta)=J_r(-\theta)=\frac{sin\theta}{\theta}I+(1-\frac{sin\theta}{\theta})u*u^T+\frac{1-cos\theta}{\theta}u× Jl(θ)=Jr(θ)=θsinθI+(1θsinθ)uuT+θ1cosθu×
J l ( θ ) − 1 = θ 2 c o t θ 2 I + ( 1 − θ 2 c o t θ 2 ) u × u T − θ 2 u × J_l(\theta)^{-1}=\frac{\theta}{2}cot\frac{\theta}{2}I+(1-\frac{\theta}{2}cot\frac{\theta}{2})u×u^T-\frac{\theta}{2}u× Jl(θ)1=2θcot2θI+(12θcot2θ)u×uT2θu×
李代数上的乘法在李群上的表示:
s o ( 3 ) − > S O ( 3 ) so(3)->SO(3) so(3)>SO(3)
e Δ ϕ e ϕ = e ( ϕ + J l − 1 ( ϕ ) Δ ϕ ) × e^{\Delta\phi}e^{ \phi}=e^{(\phi+J^{-1}_l(\phi)\Delta\phi)×} eΔϕeϕ=e(ϕ+Jl1(ϕ)Δϕ)×
s e ( 3 ) − > S E ( 3 ) se(3)->SE(3) se(3)>SE(3)
e Δ ξ × e ξ × ≈ e ( J l − 1 Δ ξ + ξ ) × e^{\Delta \xi×}e^{\xi×} \approx e^{(J_l^{_-1}\Delta\xi+\xi)×} eΔξ×eξ×e(Jl1Δξ+ξ)×
e ξ × e Δ ξ × = e ( j r − 1 Δ ξ + ξ ) × e^{\xi×}e^{\Delta \xi×}=e^{(j_r^{-1}\Delta\xi+\xi)×} eξ×eΔξ×=e(jr1Δξ+ξ)×

李代数求导(Baker-Campbell-haudsorff)

R p : R_p: Rp:对空间上点 p p p进行旋转后得到:
∂ R P ∂ ϕ = ( − R p ) × J l \frac{\partial R_P}{\partial \phi}=(-R_p)×J_l ϕRP=(Rp)×Jl

使用扰动模型简化求导(so(3)左乘)

Φ : 左 扰 动 对 应 的 Δ R \Phi:左扰动对应的\Delta R Φ:ΔR详细的推导过程看这里
Φ \Phi Φ求导:
∂ R p ∂ Φ = l i m Φ = 0 e Φ × e ϕ × p − e ϕ × p Φ ≈ − R p × \frac{\partial R_p}{\partial \Phi}=lim_{\Phi=0}\frac{e^{\Phi×}e^{\phi×}p-e^{\phi×}p}{\Phi} \approx -R_p× ΦRp=limΦ=0ΦeΦ×eϕ×peϕ×pRp×

使用扰动模型简化求导(se(3)左乘)

∂ ( T p ) ∂ δ ξ = l i m ( δ ξ − > 0 ) e δ ξ × e ξ × p − e ξ × p δ ξ = [ I − ( R p + t ) × 0 T 0 T ] = ( T P ) ⊙ . \frac{\partial (T_p)}{\partial \delta \xi}=lim_{(\delta\xi->0)}\frac{e^{\delta\xi×}e^{\xi×}p-e^{\xi ×}p}{\delta \xi}=\left[\begin{matrix} I&-(Rp+t)×\\ 0^T&0^T\\ \end{matrix}\right]=(T_P)^{ ⊙}. δξ(Tp)=lim(δξ>0)δξeδξ×eξ×peξ×p=[I0T(Rp+t)×0T]=(TP).

相似变换群与李代数(Sim(3))

定义相似变换群为:
S i m ( 3 ) = { s = [ s R t 0 T 1 ] ∈ R 4 × 4 } Sim(3)=\left\{\begin{matrix} s=\left[\begin{matrix} sR&t\\ 0^T&1\\ \end{matrix}\right] \in R^{4×4}\\ \end{matrix}\right\} Sim(3)={s=[sR0Tt1]R4×4}
定义相似变换群的李代数为:
s i m ( 3 ) = { ζ ∣ ζ = [ p θ σ ] ∈ R 7 × 1 , ζ × = [ σ I + ϕ × p 0 T 0 ] ∈ R 4 × 4 } sim(3)=\left\{\begin{matrix} \zeta|\zeta=\left[\begin{matrix} p\\ \theta\\ \sigma\\ \end{matrix}\right] \in R^{7×1}, \zeta×=\left[\begin{matrix} \sigma I+\phi×&p\\ 0^T&0\\ \end{matrix}\right]\in R^{4×4}\\ \end{matrix}\right\} sim(3)=ζζ=pθσR7×1,ζ×=[σI+ϕ×0Tp0]R4×4
相似变换群的李代数到群的变化:
s i m ( 3 ) − > S i m ( 3 ) sim(3)->Sim(3) sim(3)>Sim(3)
e ζ × = [ e σ e ϕ × J s p 0 T 1 ] e^{\zeta×}=\left[\begin{matrix} e^{\sigma}e^{\phi×}&J_sp\\ 0^T&1\\ \end{matrix}\right] eζ×=[eσeϕ×0TJsp1]
J s = e σ − 1 σ I + σ e σ s i n θ + ( 1 − e σ c o s θ ) σ 2 + θ 2 a × + ( e σ − 1 σ − ( e σ s i n θ ) θ + ( e σ c o s θ − 1 ) σ σ 2 + θ 2 ) ( a × ) 2 J_s=\frac{e^{\sigma}-1}{\sigma}I+\frac{\sigma e^{\sigma}sin\theta+(1-e^{\sigma}cos\theta)}{\sigma^2+\theta^2}a×+(\frac{e^{\sigma}-1}{\sigma}-\frac{ (e^{\sigma}sin\theta)\theta+(e^{\sigma}cos\theta-1)\sigma}{\sigma^2+\theta^2})(a×)^2 Js=σeσ1I+σ2+θ2σeσsinθ+(1eσcosθ)a×+(σeσ1σ2+θ2(eσsinθ)θ+(eσcosθ1)σ)(a×)2
相似变换群的扰动求导:
∂ S p ∂ ζ = [ I − q × q 0 T 0 T 0 ] \frac{\partial Sp}{\partial \zeta}=\left[\begin{matrix} I&-q×&q\\ 0^T&0^T&0\\ \end{matrix}\right] ζSp=[I0Tq×0Tq0]

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值