矩阵求导法则的总结

最重要的写在前面:

进行更新:随着理解的加深,我发现之前写的有些问题,重新写一下吧

矩阵求导要分成两类,第一类是用在向量函数f(x)里,比如要在x0处展开,所以需要计算该点处的雅可比这些;第二类是为了计算统一,我们规定的分子布局或分母布局这样。

一、向量函数求导

形如y=f(x)这样的函数,如果考虑在x0处的展开就变成了

y=f(x_0) +J^T(x-x_0)+\frac{1}{2}(x-x_0)^TG(x-x_0)

其中y可能是一个值(scale),也可能是一个向量,分情况讨论下:

(1)值y_{1\times 1}对向量\mathbf{x}_{n\times1}求导

\frac{\partial y}{\partial \mathbf{x}}:这时也叫梯度,求导的结果的维度当然要和分母的向量保持一致,(类似分母布局)

(2)列向量\mathbf{y}_{m\times 1}对列向量\mathbf{x}_{n\times1}求导

\frac{\partial \mathbf{y}}{\partial \mathbf{x}}:这时也叫雅可比,先将y按列展开,再将x按行展开,所以得到的结果维度为mxn,(类似分子布局),

(3)还有hessian就不说了

 

二、矩阵之间的求导

这是需要考虑分子布局或分母布局,为了保持计算一致,我们需要选择一个规矩来计算,否则就乱了,不过我常见的还是分母布局;这时参考cook book就好,简单点就是说

\frac{\partial Ax}{\partial x^T} = A

\frac{\partial A^T x}{x} = A

这类的

 

三、小结

在算出来jacobian之后,后面的矩阵计算还是得按照分母布局来推,比如下面:

当然其实其实雅可比也是可以写成分母布局的,这样就得对应行向量了,因为雅可比后面跟着的是自变量x_nx1,所以还是要看自己的习惯,用哪个布局就选好配套的公式,不要一会这样一会那样,说到底都是为了计算方便,不管中间过程写成什么维度,可以算出正确结果就好了啊,只不过我是想按照这样的规律,以防自己算错

 

Reference:

https://blog.csdn.net/daaikuaichuan/article/details/80620518--------详细讲了我上面提到的几个例子,建议结合着看☆

https://blog.csdn.net/lipengcn/article/details/52815429 ---------------有很多公式的,虽然有的也不一定对

https://blog.csdn.net/nomadlx53/article/details/50849941-------------讲分母布局和分子布局的

http://www.pianshen.com/article/5516168061/ --------------------------分子分母布局的对比

https://www.jianshu.com/p/4128e5b31fb4---------------------------------分母布局讲的比较细

  • 2
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值