【论文阅读】1998-StefanieReese-A Theory of Finite Viscoelasticity and Numerical Aspects-Sec3

3-Integration of the Evolution Equation

3.1 Operator split : isotropic

  • Evolution eqn:

− 1 2 L v b e ⋅ b e − 1 = V − 1 : τ N E Q \begin{aligned} \boxed{-\frac{1}{2}\mathscr L_vb_e\cdot b_e^{-1}=\mathscr V^{-1}:\tau_{NEQ}} \end{aligned} 21Lvbebe1=V1:τNEQ

  • rewrite it as the potential form:

− 1 2 L v b e ⋅ b e − 1 = 1 τ ∂ ∂ τ N E Q ( τ 2 τ N E Q : V − 1 : τ N E Q ) = 1 τ ∂ Φ v i s ∂ τ N E Q \begin{equation} \begin{aligned} -\frac{1}{2}\mathscr L_vb_e\cdot b_e^{-1}=\frac{1}{\tau}\frac{\partial }{\partial \tau_{NEQ}}(\frac{\tau}{2}\tau_{NEQ}:\mathscr V^{-1}:\tau_{NEQ}) = \frac{1}{\tau}\frac{\partial \Phi_{vis}}{\partial \tau_{NEQ}} \end{aligned} \end{equation} 21Lvbebe1=τ1τNEQ(2ττNEQ:V1:τNEQ)=τ1τNEQΦvis

  • Φ v i s \Phi_{vis} Φvis: interpreted as creep potential
  • Algorithm of the integration of evolution equations
  • The main features of algorithms is to carry out an operator split of material derivative of b e b_e be into an elastic predictor E E E and an inelastic corrector I I I:

b ˙ e = ( F ⋅ C i − 1 ⋅ F T ) ‾ ˙ = F ˙ F i − 1 F i − T F T + F ( C i − 1 ) ‾ ˙ F T + F F i − 1 F i − T F ˙ T = F ˙ F − 1 F e F e T F − T F T + F F − 1 F e F e T F − T F ˙ T + F ( C i − 1 ) ‾ ˙ F T = l b e + b e l + F ( C i − 1 ) ‾ ˙ F T \begin{aligned} \dot b_e &= \dot {\overline{(F\cdot C_i^{-1}\cdot F^T)}} \\ & = \dot FF_i^{-1}F_i^{-T}F^T+F\dot{\overline{(C_i^{-1})}}F^T+FF_i^{-1}F_i^{-T}\dot F^T \\ & = \dot FF^{-1}F_eF_e^TF^{-T}F^T+FF^{-1}F_eF_e^TF^{-T}\dot F^T+F\dot{\overline{(C_i^{-1})}}F^T \\ & = lb_e+b_el+F\dot{\overline{(C_i^{-1})}}F^T \end{aligned} b˙e=(FCi1FT)˙=F˙Fi1FiTFT+F(Ci1)˙FT+FFi1FiTF˙T=F˙F1FeFeTFTFT+FF1FeFeTFTF˙T+F(Ci1)˙FT=lbe+bel+F(Ci1)˙FT

b ˙ e = l ⋅ b e + b e ⋅ l ⏟ E + F ⋅ ( C i − 1 ) ‾ ˙ ⋅ F T ⏟ I \begin{equation} \begin{aligned} \dot b_e = \underbrace{l\cdot b_e+b_e\cdot l}_{E}+\underbrace{F\cdot \dot{\overline{(C_i^{-1})}}\cdot F^T}_{I} \end{aligned} \end{equation} b˙e=E lbe+bel+I F(Ci1)˙FT

In elastic predictor step the material time derivative of C i − 1 C_i^{-1} Ci1 is set to zero

( C i − 1 ) t r i a l = ( C i − 1 ) t = t n − 1 ⇒ ( b e ) t r i a l = ( F ) t = t n ⋅ ( C i − 1 ) t = t n − 1 ⋅ ( F ) t = t n T \begin{equation} \begin{aligned} (C_i^{-1})_{trial}=(C_i^{-1})_{t=t_{n-1}}\Rightarrow (b_e)_{trial} = (F)_{t =t_n}\cdot (C_i^{-1})_{t=t_{n-1}}\cdot (F)_{t=t_n}^T \end{aligned} \end{equation} (Ci1)trial=(Ci1)t=tn1(be)trial=(F)t=tn(Ci1)t=tn1(F)t=tnT

  • Analogy to elastoplasticity, the state calculated with the elastic predictor step is called the trial state

In inelastic corrector step, the spatial velocity gradient l l l is set to zero, leads L v b e = b ˙ e \mathscr L_vb_e = \dot b_e Lvbe=b˙e

by:
b ˙ e = F ⋅ ( C i − 1 ) ‾ ˙ ⋅ F T ⏟ I = L v b e \dot b_e = \underbrace{F\cdot \dot{\overline{(C_i^{-1})}}\cdot F^T}_{I} = \mathscr L_vb_e b˙e=I F(Ci1)˙FT=Lvbe

L v b e = b ˙ e \begin{equation} \begin{aligned} \mathscr L_vb_e = \dot b_e \end{aligned} \end{equation} Lvbe=b˙e

by:
− 1 2 L v b e ⋅ b e − 1 = V − 1 : τ N E Q \begin{aligned} -\frac{1}{2}\mathscr L_vb_e\cdot b_e^{-1}=\mathscr V^{-1}:\tau_{NEQ} \end{aligned} 21Lvbebe1=V1:τNEQ

b ˙ e = − ( 2 V − 1 : τ N E Q ) ⋅ b e \begin{equation} \begin{aligned} \dot b_e=-(2\mathscr V^{-1}:\tau_{NEQ})\cdot b_e \end{aligned} \end{equation} b˙e=(2V1:τNEQ)be

  • Solving the differential equation by exponential mapping:

b e = exp ⁡ [ − 2 ∫ t n − 1 t V − 1 : τ N E Q d t ] ⋅ b e \begin{equation} \begin{aligned} b_e = \exp{[-2\int_{t_{n-1}}^t\mathscr V^{-1}:\tau_{NEQ}dt]}\cdot b_e \end{aligned} \end{equation} be=exp[2tn1tV1:τNEQdt]be

( b e ) t = t n ≈ exp ⁡ [ − 2 ( t n − t n − 1 ) ⏟ Δ t ( V − 1 : τ N E Q ) t = t n ] ⋅ ( b e ) t r i a l \begin{equation} \begin{aligned} (b_e)_{t=t_n} \approx \exp{[-2\underbrace{(t_n-t_{n-1})}_{\Delta t}(\mathscr V^{-1}:\tau_{NEQ})_{t=t_n}]}\cdot (b_e)_{trial} \end{aligned} \end{equation} (be)t=tnexp[2Δt (tntn1)(V1:τNEQ)t=tn](be)trial

  • approximate expression is first order accurate

For isotropy case

  • τ N E Q \tau_{NEQ} τNEQ is commutes with b e b_e be and also with ( b e ) t r i a l (b_e)_{trial} (be)trial
  • Prove b e b_e be and ( b e ) t r i a l (b_e)_{trial} (be)trial share the same set of eigenvectors in the case of isotropy
  • Note that:

b e = exp ⁡ [ − 2 Δ t V − 1 : τ N E Q ] ⏟ a ⋅ ( b e ) t r i a l \begin{equation} \begin{aligned} b_e = \underbrace{\exp{[-2\Delta t\mathscr V^{-1}:\tau_{NEQ}]}}_{\mathsf a}\cdot (b_e)_{trial} \end{aligned} \end{equation} be=a exp[tV1:τNEQ](be)trial

  • By assumption of isotropy of Ψ N E Q \Psi_{NEQ} ΨNEQ that τ N E Q \tau_{NEQ} τNEQ has the same eigenspace as b e b_e be , (isotropic tensor function representation theorem)
  • Since V − 1 \mathscr V^{-1} V1 is isotropic, V − 1 : τ N E Q \mathscr V^{-1}:\tau_{NEQ} V1:τNEQ shares the same eigenspace as b e b_e be
  • a \mathsf a a has the same Eigen space as b e b_e be
  • Because of the properties of exponential map on symmetric tensor, the existence of inverse of a \mathsf a a is guaranteed

a − 1 ⋅ b e = ( b e ) t r i a l \begin{equation} \begin{aligned} \mathsf a^{-1}\cdot b_e = (b_e)_{trial} \end{aligned} \end{equation} a1be=(be)trial

  • a − 1 ⋅ b e \mathsf a^{-1}\cdot b_e a1be and b e b_e be shares the same eigenspace
  • Thus, b e b_e be and ( b e ) t r i a l (b_e)_{trial} (be)trial shares the same eigenspace
  • Solve (8) in terms of principal values, finite viscoelastic evolution is:

by:

V − 1 = 1 2 η D ( 1 4 − 1 3 1 ⊗ 1 ) + 1 9 η V 1 ⊗ 1 V − 1 : τ N E Q = 1 2 η D d e v [ τ N E Q ] + 1 9 η V τ N E Q : 1 \mathscr V^{-1}=\frac{1}{2\eta_D}(\textbf 1^4-\frac{1}{3}\textbf 1\otimes \textbf1)+\frac{1}{9\eta_V}\textbf 1\otimes \textbf 1 \\ \quad \\ \mathscr V^{-1} : \tau_{NEQ} = \frac{1}{2\eta_D}dev[\tau_{NEQ}]+\frac{1}{9\eta_V}\tau_{NEQ}: \textbf 1 V1=2ηD1(143111)+9ηV111V1:τNEQ=2ηD1dev[τNEQ]+9ηV1τNEQ:1

λ A e 2 = exp ⁡ [ − Δ t ( 1 η D d e v [ τ A ] + 2 9 η V τ N E Q : 1 ) ] ( λ A e 2 ) t r i a l \begin{equation} \begin{aligned} \lambda_{Ae}^2=\exp{[-\Delta t(\frac{1}{\eta_D}dev[\tau_{A}]+\frac{2}{9\eta_V}\tau_{NEQ}: \textbf 1)]} (\lambda_{Ae}^2)_{trial} \end{aligned} \end{equation} λAe2=exp[Δt(ηD1dev[τA]+9ηV2τNEQ:1)](λAe2)trial

  • d e v [ τ A ] dev[\tau_{A}] dev[τA] are the principal values of d e v [ τ N E Q ] dev[\tau_{NEQ}] dev[τNEQ]
  • λ A e 2 \lambda_{Ae}^2 λAe2 are the principal values of ( b e ) t = t n (b_e)_{t=t_n} (be)t=tn
  • ( λ A e 2 ) t r i a l (\lambda_{Ae}^2)_{trial} (λAe2)trial are the principal values of ( b e ) t r i a l (b_e)_{trial} (be)trial
  • Take the Logarithm of both sides:

ε A e = − Δ t ( 1 2 η D d e v [ τ A ] + 1 9 η V τ N E Q : 1 ) + ( ε A e ) t r i a l \begin{equation} \begin{aligned} \boxed{\varepsilon_{Ae}=-\Delta t(\frac{1}{2\eta_D}dev[\tau_{A}]+\frac{1}{9\eta_V}\tau_{NEQ}: \textbf 1)+(\varepsilon_{Ae})_{trial}} \end{aligned} \end{equation} εAe=Δt(2ηD1dev[τA]+9ηV1τNEQ:1)+(εAe)trial

  • ε A e = ln ⁡ λ A e 2 \varepsilon_{Ae} = \ln \lambda_{Ae}^2 εAe=lnλAe2 : are the elastic logarithmic principal stretches
  • (11) furnishes an implicit nonlinear equation for determining the principal values of b e b_e be

3.2 Linearized case

− 1 2 ( L v b e ⋅ b e − 1 ) l i n = 1 2 τ ( b e − 1 ) \begin{equation} \begin{aligned} \boxed{-\frac{1}{2}(\mathscr L_vb_e\cdot b_e^{-1})_{lin} = \frac{1}{2\tau}(b_e-1)} \end{aligned} \end{equation} 21(Lvbebe1)lin=2τ1(be1)

  • in inelastic corrector step: L v b e = b ˙ e \mathscr L_vb_e = \dot b_e Lvbe=b˙e

b ˙ e = − 1 τ ( b e − 1 ) ⋅ b e \dot b_e=-\frac{1}{\tau}(b_e-1)\cdot b_e b˙e=τ1(be1)be

  • Solving the differential equation by exponential mapping:

b e = exp ⁡ [ − 1 τ ∫ t n − 1 t ( b e − 1 ) d t ] ⋅ ( b e ) t r i a l ( b e ) t = t n ≈ exp ⁡ [ − 1 τ ( t n − t n − 1 ) ⏟ Δ t ( ( b e ) t = t n − 1 ) ] ⋅ ( b e ) t r i a l b_e = \exp [-\frac{1}{\tau}\int_{t_{n-1}}^t(b_e-1)dt] \cdot (b_e)_{trial} \\ \quad \\ (b_e)_{t=t_n} \approx \exp [-\frac{1}{\tau}\underbrace{(t_n-t_{n-1})}_{\Delta t}((b_e)_{t=t_n}-1)]\cdot (b_e)_{trial} be=exp[τ1tn1t(be1)dt](be)trial(be)t=tnexp[τ1Δt (tntn1)((be)t=tn1)](be)trial

  • For isotropic case

λ A e 2 = exp ⁡ [ − Δ t τ ( λ A e 2 − 1 ) ] ( λ A e 2 ) t r i a l \begin{equation} \begin{aligned} \lambda_{Ae}^2=\exp[-\frac{\Delta t}{\tau}(\lambda_{Ae}^2-1)](\lambda_{Ae}^2)_{trial} \end{aligned} \end{equation} λAe2=exp[τΔt(λAe21)](λAe2)trial

  • hence:

ε A e = − Δ t τ 1 2 ( λ A e 2 − 1 ) + ( ε A e ) t r i a l \begin{equation} \begin{aligned} \varepsilon_{Ae}=-\frac{\Delta t}{\tau}\frac{1}{2}(\lambda_{Ae}^2-1)+(\varepsilon_{Ae})_{trial} \end{aligned} \end{equation} εAe=τΔt21(λAe21)+(εAe)trial

  • linearizes ε A e = ln ⁡ λ A e \varepsilon_{Ae} = \ln \lambda_{Ae} εAe=lnλAe with respect to λ A e 2 \lambda_{Ae}^2 λAe2 around thermodynamic equilibrium λ A e 2 = 1 \lambda_{Ae}^2=1 λAe2=1:

( ε A e ) l i n = [ ∂ ( ln ⁡ λ A e ) ∂ ( λ A e 2 ) ] E Q ( λ A e 2 − 1 ) = [ ∂ ( 1 2 ln ⁡ λ A e 2 ) ∂ ( λ A e 2 ) ] E Q ( λ A e 2 − 1 ) = [ 1 2 1 λ A e 2 ] λ A e 2 = 1 ( λ A e 2 − 1 ) = 1 2 ( λ A e 2 − 1 ) \begin{equation} \begin{aligned} (\varepsilon_{Ae})_{lin} &= [\frac{\partial (\ln \lambda_{Ae})}{\partial (\lambda _{Ae}^2)}]_{EQ}(\lambda_{Ae}^2-1) \\ & = [\frac{\partial (\frac{1}{2}\ln \lambda_{Ae}^2)}{\partial (\lambda _{Ae}^2)}]_{EQ}(\lambda_{Ae}^2-1) \\ & = [\frac{1}{2}\frac{1}{\lambda_{Ae}^2}]_{\lambda_{Ae}^2=1}(\lambda_{Ae}^2-1) \\ & = \frac{1}{2}(\lambda_{Ae}^2-1) \end{aligned} \end{equation} (εAe)lin=[(λAe2)(lnλAe)]EQ(λAe21)=[(λAe2)(21lnλAe2)]EQ(λAe21)=[21λAe21]λAe2=1(λAe21)=21(λAe21)

  • evolution equation (12) is valid for small perturbation away from thermodynamic equilibrium, no restriction for (15)
  • substitue (15) into (14):

ε A e = − Δ t τ ε A e + ( ε A e ) t r i a l \begin{equation} \begin{aligned} \boxed{\varepsilon_{Ae} = -\frac{\Delta t}{\tau}\varepsilon _{Ae}+(\varepsilon_{Ae})_{trial}} \end{aligned} \end{equation} εAe=τΔtεAe+(εAe)trial

  • Solving for ε A e \varepsilon_{Ae} εAe:

ε A e = ( 1 + Δ t τ ) − 1 ( ε A e ) t r i a l \begin{equation} \begin{aligned} \varepsilon_{Ae} = (1+\frac{\Delta t}{\tau})^{-1}(\varepsilon_{Ae})_{trial} \end{aligned} \end{equation} εAe=(1+τΔt)1(εAe)trial

  • is explicit update formula for the logarithmic principal values of b e b_e be

3.3 Local Newton Iteration

for isotropic case

  • non-equilibrium free energy Ψ N E Q \Psi_{NEQ} ΨNEQ can be represented as a function of principal values b A e = λ A e 2 b_{Ae}=\lambda_{Ae}^2 bAe=λAe2 of b e \mathbf b_e be:

Ψ N E Q = Ψ N E Q ( b 1 e , b 2 e , b 3 e ) \begin{equation} \begin{aligned} \Psi_{NEQ} = \Psi_{NEQ}(b_{1e},b_{2e}, b_{3e}) \end{aligned} \end{equation} ΨNEQ=ΨNEQ(b1e,b2e,b3e)

  • Split the non-equilobrioum Kirchhoff stress tensor and the non-equilibrium part of free energy into volumetric and deviatoric parts:

Ψ N E Q = ( Ψ N E Q ) D ‾ ^ ( b ‾ 1 e , b ‾ 2 e , b ‾ 3 e ) + ( Ψ N E Q ) V ‾ ^ ( J e ) \begin{equation} \begin{aligned} \Psi_{NEQ} =\hat{\overline{(\Psi_{NEQ})_D}}(\overline b_{1e}, \overline b_{2e},\overline b_{3e})+\hat{\overline{(\Psi_{NEQ})_V}}(J_e) \end{aligned} \end{equation} ΨNEQ=(ΨNEQ)D^(b1e,b2e,b3e)+(ΨNEQ)V^(Je)

  • Here, J e J_e Je denotes the determinant of F e F_e Fe:

J e = λ 1 e λ 2 e λ 3 e \begin{equation} \begin{aligned} J_e = \lambda_{1e}\lambda_{2e}\lambda_{3e} \end{aligned} \end{equation} Je=λ1eλ2eλ3e

  • And the principal values of b ‾ e \overline b_e be:

b ‾ A e = J e − ( 2 / 3 ) b A e = J e − ( 2 / 3 ) λ A e 2 \begin{equation} \begin{aligned} \overline b_{Ae}=J_e^{-(2/3)}b_{Ae}=J_e^{-(2/3)}\lambda_{Ae}^2 \end{aligned} \end{equation} bAe=Je(2/3)bAe=Je(2/3)λAe2

  • where:

b ‾ e = h e − ( 2 / 3 ) b e \begin{equation} \begin{aligned} \overline b_e = h_e^{-(2/3)}b_e \end{aligned} \end{equation} be=he(2/3)be

Ogden Models

  • Ψ N E Q \Psi_{NEQ} ΨNEQ split into the deviatoric and volumetric part :

Ψ N E Q = ∑ r = 1 3 ( μ m ) r ( α m ) r ( b ‾ 1 e ( α m ) r / 2 + b ‾ 2 e ( α m ) r / 2 + b ‾ 3 e ( α m ) r / 2 − 3 ) ⏟ ( Ψ N E Q ) D + K m 4 ( J e 2 − 2 ln ⁡ J e − 1 ) ⏟ ( Ψ N E Q ) V \begin{equation} \begin{aligned} \Psi_{NEQ} = \underbrace{\sum_{r=1}^3 \frac{(\mu_m)_r}{(\alpha_m)_r}(\overline b_{1e}^{(\alpha_m)_r/2}+\overline b_{2e}^{(\alpha_m)_r/2}+\overline b_{3e}^{(\alpha_m)_r/2}-3)}_{(\Psi_{NEQ})_D}+\underbrace{\frac{K_m}{4}(J_e^2-2\ln J_e-1)}_{(\Psi_{NEQ})_V} \end{aligned} \end{equation} ΨNEQ=(ΨNEQ)D r=13(αm)r(μm)r(b1e(αm)r/2+b2e(αm)r/2+b3e(αm)r/23)+(ΨNEQ)V 4Km(Je22lnJe1)

  • ( μ m ) r (\mu_m)_r (μm)r and ( α m ) r (\alpha_m)_r (αm)r are elasticity constant
  • the shear modulus μ m \mu_m μm :

μ m = ∑ r = 1 3 1 2 ( μ m ) r ( α m ) r \begin{equation} \begin{aligned} \mu_m = \sum_{r = 1}^3\frac{1}{2}(\mu_m)_r(\alpha_m)_r \end{aligned} \end{equation} μm=r=1321(μm)r(αm)r

  • For rubberlike material, we have K m ≈ 1000 ( μ m ) r K_m \approx 1000(\mu_m)_r Km1000(μm)r, which means that the material behavior is nearly incompressible
  • Non-equilibrium part of the Kirchhoff stress tensor:

By:

A : ( u ⊗ v ) = u ⋅ A v = ( u ⊗ v ) : A A:(u\otimes v)=u\cdot Av=(u\otimes v):A A:(uv)=uAv=(uv):A

d b e = d ( ∑ A = 1 3 λ A e 2 n A ⊗ n A ) = ∑ A = 1 3 ( 2 λ A e d λ A e n A ⊗ n A + λ A e 2 ( d n A ⊗ n A + n A ⊗ d n A ) ) ⇒ n A ⋅ d b e ⋅ n A = 2 λ A e d λ A e ∵     n A ⋅ d b e ⋅ n A = d b e : ( n A ⊗ n A ) ⇒ d b e : ( n A ⊗ n A ) = 2 λ A e d λ A e ⇒ ∂ b e ∂ λ A e d λ A e : ( n A ⊗ n A ) = 2 λ A e d λ A e ⇒ 1 2 λ A e ∂ b e ∂ λ A e : ( n A ⊗ n A ) = 1 ∵     1 = ∂ b e ∂ λ A e : ∂ λ A e ∂ b e ⇒ ∂ λ A e ∂ b e = 1 2 λ A e ( n A ⊗ n A ) \begin{aligned} db_e &= d(\sum_{A=1}^3\lambda_{Ae}^2 n_A \otimes n_A) \\ &= \sum_{A=1}^3(2\lambda_{Ae}d\lambda_{Ae}n_A\otimes n_A+\lambda_{Ae}^2(dn_A\otimes n_A+n_A\otimes dn_A)) \\ \Rightarrow &n_A\cdot db_e \cdot n_A =2\lambda_{Ae}d\lambda_{Ae} \\ \because \ \ \ & n_A\cdot db_e\cdot n_A = db_e:(n_A\otimes n_A) \\ \Rightarrow & db_e:(n_A\otimes n_A) = 2\lambda_{Ae}d\lambda_{Ae} \\ \Rightarrow& \frac{\partial b_e}{\partial \lambda_{Ae}}d\lambda_{Ae}:(n_A\otimes n_A) = 2\lambda_{Ae}d\lambda_{Ae} \\ \Rightarrow & \frac{1}{2\lambda_{Ae}}\frac{\partial b_e}{\partial \lambda_{Ae}}:(n_A\otimes n_A) = 1 \\ \because \ \ \ & 1=\frac{\partial b_e}{\partial \lambda_{Ae}}:\frac{\partial \lambda_{Ae}}{\partial b_e} \\ \Rightarrow & \frac{\partial \lambda_{Ae}}{\partial b_e} = \frac{1}{2\lambda_{Ae}}(n_A \otimes n_A) \end{aligned} dbe      =d(A=13λAe2nAnA)=A=13(2λAedλAenAnA+λAe2(dnAnA+nAdnA))nAdbenA=2λAedλAenAdbenA=dbe:(nAnA)dbe:(nAnA)=2λAedλAeλAebedλAe:(nAnA)=2λAedλAe2λAe1λAebe:(nAnA)=11=λAebe:beλAebeλAe=2λAe1(nAnA)

τ N E Q = 2 ∂ Ψ N E Q ∂ b e ⋅ b e = 2 ∑ A = 1 3 ∂ Ψ N E Q ∂ λ A e ∂ λ A e ∂ b e ⋅ λ A e 2 n A ⊗ n A = 2 ∑ A = 1 3 ∂ Ψ N E Q ∂ λ A e 1 2 λ A e ( n A ⊗ n A ) ⋅ λ A e 2 n A ⊗ n A = ∑ A = 1 3 ∂ Ψ N E Q ∂ λ A e λ A e n A ⊗ n A = ∑ A = 1 3 τ A n A ⊗ n A \begin{equation} \begin{aligned} \tau_{NEQ} &= 2\frac{\partial \Psi_{NEQ}}{\partial b_e} \cdot b_e \\ &=2\sum_{A=1}^3\frac{\partial \Psi_{NEQ}}{\partial \lambda_{Ae}}\frac{\partial \lambda_{Ae}}{\partial b_e}\cdot \lambda_{Ae}^2 n_A \otimes n_A \\ & =2\sum_{A=1}^3\frac{\partial \Psi_{NEQ}}{\partial \lambda_{Ae}}\frac{1}{2\lambda_{Ae}}(n_A \otimes n_A)\cdot \lambda_{Ae}^2 n_A \otimes n_A \\ & =\sum_{A=1}^3\frac{\partial \Psi_{NEQ}}{\partial \lambda_{Ae}}\lambda_{Ae}n_A \otimes n_A \\ & =\sum_{A=1}^3\tau_An_A \otimes n_A \end{aligned} \end{equation} τNEQ=2beΨNEQbe=2A=13λAeΨNEQbeλAeλAe2nAnA=2A=13λAeΨNEQ2λAe1(nAnA)λAe2nAnA=A=13λAeΨNEQλAenAnA=A=13τAnAnA

  • τ A \tau_A τA is the principal Kirchhoff stress :

By: (19), (20), (21)

∂ J e ∂ λ A e = ∂ ( λ 1 e λ 2 e λ 3 e ) ∂ λ A e = J e λ A e \frac{\partial J_e}{\partial \lambda_{Ae}}=\frac{\partial (\lambda_{1e}\lambda_{2e}\lambda_{3e})}{\partial \lambda_{Ae}}=\frac{J_e}{\lambda_{Ae}} λAeJe=λAe(λ1eλ2eλ3e)=λAeJe

τ A = ∂ Ψ N E Q ∂ λ A e λ A e = ∂ ( Ψ N E Q ) D ∂ λ A e λ A e + ∂ ( Ψ N E Q ) V ∂ λ A e λ A e = ∑ B = 1 3 ∂ ( Ψ N E Q ) D ∂ b ‾ B e ∂ b ‾ B e ∂ λ A e λ A e + ∂ ( Ψ N E Q ) V ∂ J e ∂ J e ∂ λ A e λ A e = ∑ B = 1 3 ∂ ( Ψ N E Q ) D ∂ b ‾ B e ∂ b ‾ B e ∂ λ A e λ A e ⏟ d e v τ A + ∂ ( Ψ N E Q ) V ∂ J e J e ⏟ 1 3 τ N E Q : 1 \begin{equation} \begin{aligned} \tau_A &= \frac{\partial \Psi_{NEQ}}{\partial \lambda_{Ae}}\lambda_{Ae} \\ & = \frac{\partial (\Psi_{NEQ})_D}{\partial \lambda_{Ae}}\lambda_{Ae}+\frac{\partial (\Psi_{NEQ})_V}{\partial \lambda_{Ae}}\lambda_{Ae} \\ & = \sum_{B=1}^3\frac{\partial (\Psi_{NEQ})_D}{\partial \overline b_{Be}}\frac{\partial \overline b_{Be}}{\partial \lambda_{Ae}}\lambda_{Ae}+\frac{\partial (\Psi_{NEQ})_V}{\partial J_e}\frac{\partial J_e}{\partial \lambda_{Ae}}\lambda_{Ae} \\ & = \underbrace{ \sum_{B=1}^3\frac{\partial (\Psi_{NEQ})_D}{\partial \overline b_{Be}}\frac{\partial \overline b_{Be}}{\partial \lambda_{Ae}}\lambda_{Ae}}_{dev \tau_A}+\underbrace{\frac{\partial (\Psi_{NEQ})_V}{\partial J_e}J_e}_{\frac{1}{3}\tau_{NEQ}:\textbf 1} \end{aligned} \end{equation} τA=λAeΨNEQλAe=λAe(ΨNEQ)DλAe+λAe(ΨNEQ)VλAe=B=13bBe(ΨNEQ)DλAebBeλAe+Je(ΨNEQ)VλAeJeλAe=devτA B=13bBe(ΨNEQ)DλAebBeλAe+31τNEQ:1 Je(ΨNEQ)VJe

  • Verify:

By: (22)
∂ det ⁡ A ∂ A = det ⁡ A A − 1 ⇒ ∂ J e 2 ∂ b e = J e 2 b e − 1 ⇒ ∂ J e ∂ b e = J e 2 b e − 1 ⇒ ∂ J e − 2 / 3 ∂ b e = − 2 3 J e − 5 / 3 ∂ J e ∂ b e = − 1 3 J e − 2 / 3 b e − 1 \quad \frac{\partial \det A}{\partial A} =\det AA^{-1} \\ \quad \\ \Rightarrow \quad \frac{\partial J_e^2}{\partial b_e}=J_e^2b_e^{-1} \quad \Rightarrow \quad \frac{\partial J_e}{\partial b_e}=\frac{J_e}{2}b_e^{-1} \\ \quad \\ \Rightarrow \quad \frac{\partial J_e^{-2/3}}{\partial b_e}=-\frac{2}{3}J_e^{-5/3}\frac{\partial J_e}{\partial b_e}=-\frac{1}{3}J_e^{-2/3}b_e^{-1} AdetA=detAA1beJe2=Je2be1beJe=2Jebe1beJe2/3=32Je5/3beJe=31Je2/3be1

∂ ( Φ A ) ∂ C = A ⊗ ∂ Φ ∂ C + Φ ∂ A ∂ C ⇒ ∂ b ‾ e ∂ b e = ∂ ( J e − 2 / 3 b e ) ∂ b e = J e − 2 / 3 ∂ b e ∂ b e + b e ⊗ ∂ J − 2 / 3 ∂ b e = J e − 2 / 3 1 4 − 1 3 J e − 2 / 3 b e ⊗ b e − 1 = J e − 2 / 3 ( 1 4 − 1 3 b e ⊗ b e − 1 ) ⇒   2 ∂ ( Ψ N E Q ) D ∂ b e ⋅ b e = 2 ∂ ( Ψ N E Q ) D ∂ b ‾ e : ∂ b ‾ e ∂ b e ⋅ b e = 2 ∂ ( Ψ N E Q ) D ∂ b ‾ e ⋅ J e 2 / 3 b ‾ e : ( J e − 2 / 3 ( 1 4 − 1 3 b e ⊗ b e − 1 ) ) = 2 ∂ ( Ψ N E Q ) D ∂ b ‾ e ⋅ b ‾ e : ( 1 4 − 1 3 b e ⊗ b e − 1 ) = d e v [ 2 ∂ ( Ψ N E Q ) D ∂ b ‾ e ⋅ b ‾ e ] = d e v [ τ A ] \begin{aligned} &\frac{\partial (\Phi A)}{\partial C} = A\otimes \frac{\partial \Phi}{\partial C}+\Phi \frac{\partial A}{\partial C} \\ \quad \\ \Rightarrow & \quad \frac{\partial \overline b_e}{\partial b_e}=\frac{\partial (J_e^{-2/3}b_e)}{\partial b_e}=J_e^{-2/3}\frac{\partial b_e}{\partial b_e}+b_e\otimes \frac{\partial J^{-2/3}}{\partial b_e} \\ &=J_e^{-2/3}\textbf 1^4-\frac{1}{3}J_e^{-2/3}b_e\otimes b_e^{-1} \\ & = J_e^{-2/3}(\textbf 1^4-\frac{1}{3}b_e\otimes b_e^{-1}) \\ \Rightarrow & \ 2 \frac{\partial (\Psi_{NEQ})_D}{\partial b_e}\cdot b_e=2\frac{\partial (\Psi_{NEQ})_D}{\partial \overline b_e}:\frac{\partial \overline b_e}{\partial b_e}\cdot b_e \\ & = 2\frac{\partial (\Psi_{NEQ})_D}{\partial \overline b_e}\cdot J_e^{2/3}\overline b_e:(J_e^{-2/3}(\textbf 1^4-\frac{1}{3}b_e\otimes b_e^{-1})) \\ & = 2\frac{\partial (\Psi_{NEQ})_D}{\partial \overline b_e}\cdot \overline b_e:(\textbf 1^4-\frac{1}{3}b_e\otimes b_e^{-1}) \\ & = dev[2\frac{\partial (\Psi_{NEQ})_D}{\partial \overline b_e}\cdot \overline b_e] \\ &= dev[\tau_A] \end{aligned} C(ΦA)=ACΦ+ΦCAbebe=be(Je2/3be)=Je2/3bebe+bebeJ2/3=Je2/31431Je2/3bebe1=Je2/3(1431bebe1) 2be(ΨNEQ)Dbe=2be(ΨNEQ)D:bebebe=2be(ΨNEQ)DJe2/3be:(Je2/3(1431bebe1))=2be(ΨNEQ)Dbe:(1431bebe1)=dev[2be(ΨNEQ)Dbe]=dev[τA]

⇒ ∑ B = 1 3 ∂ ( Ψ N E Q ) D ∂ b ‾ B e ∂ b ‾ B e ∂ λ A e λ A e = 2 ∂ ( Ψ N E Q ) D ∂ b ‾ e ⋅ b ‾ e = d e v [ τ A ] \begin{aligned} \Rightarrow \sum_{B=1}^3\frac{\partial (\Psi_{NEQ})_D}{\partial \overline b_{Be}}\frac{\partial \overline b_{Be}}{\partial \lambda_{Ae}}\lambda_{Ae} =2\frac{\partial (\Psi_{NEQ})_D}{\partial \overline b_e}\cdot \overline b_e = dev[\tau_A] \end{aligned} B=13bBe(ΨNEQ)DλAebBeλAe=2be(ΨNEQ)Dbe=dev[τA]

∵ τ N E Q : 1 = τ A : 1 ⇒ ∂ ( Ψ N E Q ) V ∂ J e J e = 1 3 τ N E Q : 1 \because \quad \tau_{NEQ}:\textbf 1= \tau_A : \textbf 1\\ \quad \\ \Rightarrow \frac{\partial (\Psi_{NEQ})_V}{\partial J_e}J_e = \frac{1}{3}\tau_{NEQ}:\textbf 1 τNEQ:1=τA:1Je(ΨNEQ)VJe=31τNEQ:1

  • (11) is nonlinear equation, solved by means of Newton iteration, Local Newton Iteration
  • (16) is the linearized evolution equation, is explicitly solved

Remark 4:

  • Ψ N E Q \Psi_{NEQ} ΨNEQ represent strain energy in a single Maxwell element
  • To model viscous of certain material it’s necessary to use several Maxwell elements parallel
  • In this case, solve an evolution equation for each Maxwell element and additional contribution to non-equilibrium part of Kirchhoff stress tensor

Local Newton Iteration

  • [1] Non-linear equation, from (11)

r A = ε A e + Δ t ( 1 2 η D d e v [ τ A ] + 1 9 η V τ N E Q : 1 ) − ( ε A e ) t r i a l = 0 \begin{equation} \begin{aligned} r_A = \varepsilon_{Ae} +\Delta t(\frac{1}{2\eta_D}dev[\tau_{A}]+\frac{1}{9\eta_V}\tau_{NEQ}: \textbf 1)-(\varepsilon_{Ae})_{trial}=0 \end{aligned} \end{equation} rA=εAe+Δt(2ηD1dev[τA]+9ηV1τNEQ:1)(εAe)trial=0

  • [2] Linearize around ε A e = ( ε A e ) k \varepsilon_{Ae}=(\varepsilon_{Ae})_k εAe=(εAe)k

r A ≈ r A ∣ ( ε A e ) k ⏟ ( r ~ A ) k + ∑ B = 1 3 ∂ r A ∂ ε B e ∣ ( ε A e ) k ⏟ ( K A B ) k ( Δ ε B e ) k = 0 \begin{equation} \begin{aligned} r_A \approx \underbrace {r_A|_{(\varepsilon_{Ae})_k}}_{(\tilde r_A)_k}+\sum_{B=1}^3 \underbrace{\frac{\partial r_A}{\partial \varepsilon_{Be}}|_{(\varepsilon_{Ae})_k}}_{(K_{AB})_k}(\Delta\varepsilon_{Be})_k=0 \end{aligned} \end{equation} rA(r~A)k rA(εAe)k+B=13(KAB)k εBerA(εAe)k(ΔεBe)k=0

Calculation of K A B K_{AB} KAB:

K A B = ∂ r A ∂ ε B e K_{AB} = \frac{\partial r_A}{\partial \varepsilon_{Be}} KAB=εBerA

First, principal stress (26) has to be determined:
from (23):
∂ ( Ψ N E Q ) D ∂ b ‾ B e = ∑ r = 1 3 ( μ m ) r 2 b ‾ B e [ ( α m ) r / 2 − 1 ] ∂ ( Ψ N E Q ) V ∂ J e = K m 2 ( J e − 1 J e ) \frac{\partial (\Psi_{NEQ})_D}{\partial \overline b_{Be}}= \sum_{r = 1}^3\frac{(\mu_m)_r}{2}\overline b_{Be}^{[(\alpha_m)_r/2-1]} \\ \quad \\ \frac{\partial (\Psi_{NEQ})_V}{\partial J_e}=\frac{K_m}{2}(J_e-\frac{1}{J_e}) bBe(ΨNEQ)D=r=132(μm)rbBe[(αm)r/21]Je(ΨNEQ)V=2Km(JeJe1)
from (21):

∂ b ‾ B e ∂ λ A e = ∂ ( J e − 2 / 3 λ B e 2 ) ∂ λ A e = − 2 3 J e − 2 / 3 λ B e 2 λ A e ∂ b ‾ A e ∂ λ A e = ∂ ( J e − 2 / 3 λ A e 2 ) ∂ λ A e = 4 3 J e − 2 / 3 λ A e \frac{\partial \overline b_{Be}}{\partial \lambda_{Ae}}=\frac{\partial (J_e^{-2/3}\lambda_{Be}^2)}{\partial \lambda_{Ae}}=-\frac{2}{3}J_e^{-2/3}\frac{\lambda_{Be}^2}{\lambda_{Ae}} \\ \quad \\ \frac{\partial \overline b_{Ae}}{\partial \lambda_{Ae}}=\frac{\partial (J_e^{-2/3}\lambda_{Ae}^2)}{\partial \lambda_{Ae}}=\frac{4}{3}J_e^{-2/3}\lambda_{Ae} λAebBe=λAe(Je2/3λBe2)=32Je2/3λAeλBe2λAebAe=λAe(Je2/3λAe2)=34Je2/3λAe

from (26) & (21): A ≠ B , A ≠ C , B ≠ C A \neq B, A \neq C, B \neq C A=B,A=C,B=C

τ A = ∑ B = 1 3 ∂ ( Ψ N E Q ) D ∂ b ‾ B e ∂ b ‾ B e ∂ λ A e λ A e + ∂ ( Ψ N E Q ) V ∂ J e J e = ∂ ( Ψ N E Q ) D ∂ b ‾ A e ∂ b ‾ A e ∂ λ A e λ A e + ∂ ( Ψ N E Q ) D ∂ b ‾ B e ∂ b ‾ B e ∂ λ A e λ A e + ∂ ( Ψ N E Q ) D ∂ b ‾ C e ∂ b ‾ C e ∂ λ A e λ A e + ∂ ( Ψ N E Q ) V ∂ J e J e = ∑ r = 1 3 ( μ m ) r ( 2 3 b ‾ A e [ ( α m ) r / 2 ] − 1 3 b ‾ B e [ ( α m ) r / 2 ] − 1 3 b ‾ C e [ ( α m ) r / 2 ] ) ⏟ d e v [ τ A ] + K m 2 ( J e 2 − 1 ) ⏟ 1 3 τ N E Q : 1 \begin{aligned} \tau_A & = \sum_{B=1}^3\frac{\partial (\Psi_{NEQ})_D}{\partial \overline b_{Be}}\frac{\partial \overline b_{Be}}{\partial \lambda_{Ae}}\lambda_{Ae}+\frac{\partial (\Psi_{NEQ})_V}{\partial J_e}J_e \\ &=\frac{\partial (\Psi_{NEQ})_D}{\partial \overline b_{Ae}}\frac{\partial \overline b_{Ae}}{\partial \lambda_{Ae}}\lambda_{Ae}+\frac{\partial (\Psi_{NEQ})_D}{\partial \overline b_{Be}}\frac{\partial \overline b_{Be}}{\partial \lambda_{Ae}}\lambda_{Ae}+\frac{\partial (\Psi_{NEQ})_D}{\partial \overline b_{Ce}}\frac{\partial \overline b_{Ce}}{\partial \lambda_{Ae}}\lambda_{Ae}\\ &\quad \quad \quad \quad \quad +\frac{\partial (\Psi_{NEQ})_V}{\partial J_e}J_e \\ & = \underbrace{\sum_{r = 1}^3(\mu_m)_r(\frac{2}{3}\overline b_{Ae}^{[(\alpha_m)_r/2]}-\frac{1}{3}\overline b_{Be}^{[(\alpha_m)_r/2]}-\frac{1}{3}\overline b_{Ce}^{[(\alpha_m)_r/2]})}_{dev[\tau_A]}+\underbrace{\frac{K_m}{2}(J_e^2-1) }_{\frac{1}{3}\tau_{NEQ}:\textbf 1} \end{aligned} τA=B=13bBe(ΨNEQ)DλAebBeλAe+Je(ΨNEQ)VJe=bAe(ΨNEQ)DλAebAeλAe+bBe(ΨNEQ)DλAebBeλAe+bCe(ΨNEQ)DλAebCeλAe+Je(ΨNEQ)VJe=dev[τA] r=13(μm)r(32bAe[(αm)r/2]31bBe[(αm)r/2]31bCe[(αm)r/2])+31τNEQ:1 2Km(Je21)

By means of the relation:
from λ A e = exp ⁡ [ ε A e ] \lambda_{Ae}=\exp [\varepsilon_{Ae}] λAe=exp[εAe]

∂ b ‾ A e ∂ ε A e = ∂ b ‾ A e ∂ λ A e ∂ λ A e ∂ ε A e = ∂ b ‾ A e ∂ λ A e λ A e = 4 3 b ‾ A e ∂ b ‾ A e ∂ ε B e = ∂ b ‾ A e ∂ λ B e ∂ λ B e ∂ ε B e = ∂ b ‾ A e ∂ λ B e λ B e = − 2 3 b ‾ A e . ( A ≠ B ) ∂ J e ∂ ε B e = ∂ J e ∂ λ B e ∂ λ B e ∂ ε B e = J e λ B e λ B e = J e \frac{\partial \overline b_{Ae}}{\partial \varepsilon_{Ae}}=\frac{\partial \overline b_{Ae}}{\partial \lambda_{Ae}}\frac{\partial \lambda_{Ae}}{\partial \varepsilon_{Ae}}=\frac{\partial \overline b_{Ae}}{\partial \lambda_{Ae}}\lambda_{Ae}=\frac{4}{3}\overline b_{Ae} \\ \quad \\ \frac{\partial \overline b_{Ae}}{\partial \varepsilon _{Be}}=\frac{\partial \overline b_{Ae}}{\partial \lambda_{Be}}\frac{\partial \lambda_{Be}}{\partial \varepsilon_{Be}}=\frac{\partial \overline b_{Ae}}{\partial \lambda_{Be}}\lambda_{Be}=-\frac{2}{3}\overline b_{Ae}. (A \neq B) \\ \quad \\ \frac{\partial J_e}{\partial \varepsilon_{Be}}=\frac{\partial J_e}{\partial \lambda_{Be}}\frac{\partial \lambda_{Be}}{\partial \varepsilon_{Be}}=\frac{J_e}{\lambda_{Be}}\lambda_{Be}=J_e εAebAe=λAebAeεAeλAe=λAebAeλAe=34bAeεBebAe=λBebAeεBeλBe=λBebAeλBe=32bAe.(A=B)εBeJe=λBeJeεBeλBe=λBeJeλBe=Je

We arrive: A ≠ B , A ≠ C , B ≠ C A \neq B, A \neq C, B \neq C A=B,A=C,B=C

∂ d e v [ τ A ] ∂ ε A e = ∑ r = 1 3 ( μ m ) r ( α m ) r ( 4 9 b ‾ A e [ ( α m ) r / 2 ] + 1 9 b ‾ B e [ ( α m ) r / 2 ] + 1 9 b ‾ C e [ ( α m ) r / 2 ] ) ∂ d e v [ τ A ] ∂ ε B e = ∑ r = 1 3 ( μ m ) r ( α m ) r ( − 2 9 b ‾ A e [ ( α m ) r / 2 ] − 2 9 b ‾ B e [ ( α m ) r / 2 ] + 1 9 b ‾ C e [ ( α m ) r / 2 ] ) ∂ ( 1 3 τ N E Q : 1 ) ∂ ε A e = K m J e 2 \begin{aligned} &\frac{\partial dev[\tau_A]}{\partial \varepsilon_{Ae}}=\sum_{r = 1}^3(\mu_m)_r(\alpha_m)_r(\frac{4}{9}\overline b_{Ae}^{[(\alpha_m)_r/2]}+ \frac{1}{9}\overline b_{Be}^{[(\alpha_m)_r/2]}+\frac{1}{9}\overline b_{Ce}^{[(\alpha_m)_r/2]}) \\ &\frac{\partial dev[\tau_A]}{\partial \varepsilon_{Be}}=\sum_{r = 1}^3(\mu_m)_r(\alpha_m)_r(-\frac{2}{9}\overline b_{Ae}^{[(\alpha_m)_r/2]}- \frac{2}{9}\overline b_{Be}^{[(\alpha_m)_r/2]}+\frac{1}{9}\overline b_{Ce}^{[(\alpha_m)_r/2]}) \\ &\frac{\partial(\frac{1}{3}\tau_{NEQ}:\textbf 1)}{\partial \varepsilon _{Ae}}=K_mJ_e^2 \end{aligned} εAedev[τA]=r=13(μm)r(αm)r(94bAe[(αm)r/2]+91bBe[(αm)r/2]+91bCe[(αm)r/2])εBedev[τA]=r=13(μm)r(αm)r(92bAe[(αm)r/2]92bBe[(αm)r/2]+91bCe[(αm)r/2])εAe(31τNEQ:1)=KmJe2

Assume η D \eta_D ηD and η V \eta_V ηV to be constant

K A B = ∂ r A ∂ ε A e = δ A B + Δ t 1 η D ∂ d e v [ τ A ] ∂ ε B e − Δ t 1 3 η V K m J e 2 \begin{aligned} K_{AB} = \frac{\partial r_A}{\partial \varepsilon_{Ae}}=\delta_{AB}+\Delta t\frac{1}{\eta_D}\frac{\partial dev [\tau_A]}{\partial \varepsilon_{Be}}-\Delta t\frac{1}{3\eta_V}K_mJ_e^2 \end{aligned} KAB=εAerA=δAB+ΔtηD1εBedev[τA]Δt3ηV1KmJe2

  • [3] Solve for ( Δ ε B e ) k (\Delta \varepsilon_{Be})_k (ΔεBe)k:

∑ B = 1 3 ( K A B ) k ( Δ ε B e ) k = − ( r ~ A ) k \begin{equation} \begin{aligned} \sum_{B=1}^3 (K_{AB})_k(\Delta \varepsilon_{Be})_k=-(\tilde r_A)_k \end{aligned} \end{equation} B=13(KAB)k(ΔεBe)k=(r~A)k

  • [4] Update:

( ε A e ) k + 1 = ( ε A e ) k + ( Δ ε A e ) k , k ← k + 1 \begin{equation} \begin{aligned} (\varepsilon_{Ae})_{k+1}=(\varepsilon_{Ae})_k+(\Delta \varepsilon_{Ae})_k, \quad k\leftarrow k+1 \end{aligned} \end{equation} (εAe)k+1=(εAe)k+(ΔεAe)k,kk+1

  • [5] Repeat until ∣ ∣ r A ∣ ∣ < t o l ||r_A||< tol ∣∣rA∣∣<tol
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值