深度学习入门实战----基于Keras的手写数字识别 (VGG16)

本博客介绍如何使用Keras实现基于VGG16的深度学习模型,进行手写数字识别。文章引用了《Very Deep Convolutional Networks For Large-Scale Image Recongnition》的论文,并提供了相关代码实现。
摘要由CSDN通过智能技术生成

接着上一篇博客:深度学习入门实战----基于Keras的手写数字识别 (LeNet)

本文采用经典的VGG16网络结构

VGG16 论文题目:《Very Deep Convolutional Networks For Large-Scale Image Recongnition》

             论文链接:paper link

背景介绍可参照上一篇博客,本文直接贴上VGG16的代码:

import inspect
import os

import numpy as np
import tensorflow as tf
import time

VGG_MEAN = [103.939, 116.779, 123.68]


class Vgg16:
    def __init__(self, vgg16_npy_path=None):
        if vgg16_npy_path is None:
            path = inspect.getfile(Vgg16)
            path = os.path.abspath(os.path.join(path, os.pardir))
            path = os.path.join(path, "vgg16.npy")
            vgg16_npy_path = path
            print(path)

        self.data_dict = np.load(vgg16_npy_path, encoding&
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值