多视几何-点与直线的关系

直线的齐次表示

       平面上的一条直线可用形如ax+ by + c = 0的方程表示,α,b和c 的不同值给出不同的直线.因此,一条直线也可以用矢量(a,b,c)T表示.直线和矢量(α,b,c)T 不是一一对应的,因为,对任何非零常数k, 直线ax+by+c=0与直线(ka ) x + (kb) y + (kc) = 0相同.因此,对任何非零k,矢量(a, b,c)T与k(a, b, c)T表示同一直线.事实上,我们视这两个只相差一个全局缩放因子的矢量是等价的.这种等价关系下的矢量等价类被称为齐次矢量.

点的齐次表示

       点x=(x.y)T在直线l=(a,b,c)T上的充要条件是ax+by+c=O. 并可用矢量内积形式把它表示为(x,y,1)(α,b,c )T= (x,y,1)l =0;即把"1 "作为增加的最后一个坐标使IR2中的点(x.y)T表示成3 维矢量.注意对任何非零k 和直l,方程(ka,kb,kc)I=0的充要条件是(α,b,1)I=0因而,我们自然把由k不为零的不同值所构成的矢量集(kx,ky,kz)T看作是IR1中点(x,y)T的一种表示.因此,与直线一样3点也可用齐次矢量表示. 一个点的任何齐次矢量的表示形式为x=(x1,x2,x3)T, 并表示IR2的点x=(x1/x3 ,x2/x3)T. 于是点作为齐次矢量同样也是IR2的元素.

结论1 

点x在直线l 上的充要条件是xTl=0.
直线的交点 给定两直线I =(a, b, c)T和1' =(α',b' , c')T,我们希望求它们的交点.定义矢量x= 1 × l' ,这里×表示矢量积或叉积.由三重纯量积等式:l·(I × l')=l'·(I×l') =0. 推出ITx=I'Tx=0因此,如果把x视为一个点,则x同时在两条直线I 和l'上,因而是两线的交点.这表明:


结论2

两直线I 和l'的交点是点x=l × l'
注意: 两直线交点的表示之所以这样简洁是因为采用了直线和点的齐次坐标表示.

点的连线 过两点x和x'的直线的表示式可完全类似地导出.定义直线l=x × x' ,并不难验证点x和x' 都在l上.因此

结论3

过两点x和x' '的直线是l=x × x' .

转载:https://blog.csdn.net/j_d_c/article/details/53375540

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值