AZURE KINECT 采集rgbd序列

参考了官方的去畸变以及采集代码

// C++
#include <iostream>
#include <chrono>
#include <string>
// OpenCV
#include <opencv2/opencv.hpp>
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
// Kinect DK
#include <k4a/k4a.hpp>
#include "undistort.hpp"
using namespace cv;
using namespace std;

// 宏
// 方便控制是否 std::cout 信息
#define DEBUG_std_cout 0

static void calibration_blob(k4a_device_t& device, string filename = "calibration.txt")
{



    size_t calibration_size = 0;
    k4a_buffer_result_t buffer_result = k4a_device_get_raw_calibration(device, NULL, &calibration_size);
    if (buffer_result == K4A_BUFFER_RESULT_TOO_SMALL)
    {
        vector<uint8_t> calibration_buffer = vector<uint8_t>(calibration_size);
        buffer_result = k4a_device_get_raw_calibration(device, calibration_buffer.data(), &calibration_size);
        if (buffer_result == K4A_BUFFER_RESULT_SUCCEEDED)
        {
            ofstream file(filename, ofstream::binary);
            file.write(reinterpret_cast<const char *>(&calibration_buffer[0]), (long)calibration_size);
            file.close();
            cout << "Calibration blob for device " << " (serial no. "
                 << ") is saved to " << filename << endl;
        }
        else
        {
            cout << "Failed to get calibration blob" << endl;
            exit(-1);
        }
    }
    else
    {
        cout << "Failed to get calibration blob size" << endl;
        exit(-1);
    }
}

_k4a_calibration_camera_t print_calibration(k4a_device_t& device, k4a_device_configuration_t& deviceConfig)
{


    k4a_calibration_t calibration;

    // get calibration
    if (K4A_RESULT_SUCCEEDED !=
        k4a_device_get_calibration(device, deviceConfig.depth_mode, deviceConfig.color_resolution, &calibration))
    {
        cout << "Failed to get calibration" << endl;
        exit(-1);
    }

//    auto calib = calibration.depth_camera_calibration;
    auto calib = calibration.color_camera_calibration;

    cout << "resolution width: " << calib.resolution_width << endl;
    cout << "resolution height: " << calib.resolution_height << endl;
    cout << "principal point x: " << calib.intrinsics.parameters.param.cx << endl;
    cout << "principal point y: " << calib.intrinsics.parameters.param.cy << endl;
    cout << "focal length x: " << calib.intrinsics.parameters.param.fx << endl;
    cout << "focal length y: " << calib.intrinsics.parameters.param.fy << endl;
    cout << "radial distortion coefficients:" << endl;
    cout << "k1: " << calib.intrinsics.parameters.param.k1 << endl;
    cout << "k2: " << calib.intrinsics.parameters.param.k2 << endl;
    cout << "k3: " << calib.intrinsics.parameters.param.k3 << endl;
    cout << "k4: " << calib.intrinsics.parameters.param.k4 << endl;
    cout << "k5: " << calib.intrinsics.parameters.param.k5 << endl;
    cout << "k6: " << calib.intrinsics.parameters.param.k6 << endl;
    cout << "center of distortion in Z=1 plane, x: " << calib.intrinsics.parameters.param.codx << endl;
    cout << "center of distortion in Z=1 plane, y: " << calib.intrinsics.parameters.param.cody << endl;
    cout << "tangential distortion coefficient x: " << calib.intrinsics.parameters.param.p1 << endl;
    cout << "tangential distortion coefficient y: " << calib.intrinsics.parameters.param.p2 << endl;
    cout << "metric radius: " << calib.intrinsics.parameters.param.metric_radius << endl;
    return calib;
}

cv::Mat undistorted(cv::Mat &image, _k4a_calibration_camera_t calib) {
    float cx = calib.intrinsics.parameters.param.cx;
    float cy = calib.intrinsics.parameters.param.cy;
    float fx = calib.intrinsics.parameters.param.fx;
    float fy = calib.intrinsics.parameters.param.fy;
    float k1 = calib.intrinsics.parameters.param.k1;
    float k2 = calib.intrinsics.parameters.param.k2;
    float k3 = calib.intrinsics.parameters.param.k3;
    float k4 = calib.intrinsics.parameters.param.k4;
    float k5 = calib.intrinsics.parameters.param.k5;
    float k6 = calib.intrinsics.parameters.param.k6;
    float codx = calib.intrinsics.parameters.param.codx; // center of distortion is set to 0 for Brown Conrady model
    float cody = calib.intrinsics.parameters.param.cody;
    float p1 = calib.intrinsics.parameters.param.p1;
    float p2 = calib.intrinsics.parameters.param.p2;
    cv::Mat K = (cv::Mat_<double>(3, 3) << fx, 0.0, cx, 0.0, fy, cy, 0.0, 0.0, 1.0);
    cv::Mat newK;
    const cv::Mat D = (cv::Mat_<double>(8, 1) << k1, k2, p1, p2, k3, k4, k5, k6);
//    k1,k2,p1,p2[,k3,[,k4,k5,k6]]

//    cv::Mat K = (cv::Mat_<double>(3, 3) << 6.2053103020797198e+02, 0.0, 6.3205198180998377e+02
//            , 0.0, 6.1656865116870870e+02, 3.5016213113500675e+02, 0.0, 0.0, 1.0);
//    cv::Mat newK;
//    const cv::Mat D = (cv::Mat_<double>(5, 1) << 6.8597090884417358e-02
//            , -2.1407702890670174e-02, -6.8662708745400904e-03, -1.4302754640278781e-03, -5.3270781408391145e-03);

    cv::Mat UndistortImage;
    cv::undistort(image, UndistortImage, K, D, newK);
//    cout<<K<<newK<<endl;
//    cv::Mat map1, map2;
//    const double alpha = 1;
//    cv::Mat NewCameraMatrix = getOptimalNewCameraMatrix(K, D, imageSize, alpha, imageSize, 0);
//    initUndistortRectifyMap(K, D, cv::Mat(), NewCameraMatrix, imageSize, CV_16SC2, map1, map2);
//    cv::Mat UndistortImage;
//    cv::remap(image, UndistortImage, map1, map2, cv::INTER_LINEAR);
    return UndistortImage;
}




int main(int argc, char *argv[]) {
    /*
        找到并打开 Azure Kinect 设备
    */
    // 发现已连接的设备数

    const uint32_t device_count = k4a::device::get_installed_count();
    if (0 == device_count) {
        std::cout << "Error: no K4A devices found. " << std::endl;
        return -1;
    } else {
        std::cout << "Found " << device_count << " connected devices. " << std::endl;


        if (1 != device_count)// 超过1个设备,也输出错误信息。
        {
            std::cout << "Error: more than one K4A devices found. " << std::endl;
            return -1;
        } else// 该示例代码仅限对1个设备操作
        {
            std::cout << "Done: found 1 K4A device. " << std::endl;
        }
    }
    // 打开(默认)设备
    k4a_device_t device_t = NULL;
    if (K4A_RESULT_SUCCEEDED != k4a_device_open(0, &device_t))
    {
        cout << ": Failed to open device" << endl;
        exit(-1);
    }
//    calibration_blob(device_t);



//    k4a::device device = k4a::device::open(K4A_DEVICE_DEFAULT);
    k4a::device device = k4a::device(device_t);
    std::cout << "Done: open device. " << std::endl;
    /*
        检索并保存 Azure Kinect 图像数据
    */
    // 配置并启动设备
    k4a_device_configuration_t config = K4A_DEVICE_CONFIG_INIT_DISABLE_ALL;
    config.camera_fps = K4A_FRAMES_PER_SECOND_15;
    config.color_format = K4A_IMAGE_FORMAT_COLOR_BGRA32;
    config.color_resolution = K4A_COLOR_RESOLUTION_720P;
    config.depth_mode = K4A_DEPTH_MODE_NFOV_UNBINNED;
//    config.depth_mode = K4A_DEPTH_MODE_NFOV_2X2BINNED;
    config.synchronized_images_only = true;// ensures that depth and color images are both available in the capture
    device.start_cameras(&config);
    std::cout << "Done: start camera." << std::endl;
//    auto calib=print_calibration(device_t,config);
    //写入txt文件流
    ofstream rgb_out;
    ofstream d_out;
    ofstream ir_out;

    rgb_out.open("./rgb.txt");
    d_out.open("./depth.txt");
    ir_out.open("./ir.txt");

    rgb_out<<"#  color images"<<endl;
    rgb_out<<"#  file: rgbd_dataset"<<endl;
    rgb_out<<"#  timestamp"<<"    "<<"filename"<<endl;

    d_out<<"#  depth images"<<endl;
    d_out<<"#  file: rgbd_dataset"<<endl;
    d_out<<"#  timestamp"<<"    "<<"filename"<<endl;

    ir_out<<"#  ir images"<<endl;
    ir_out<<"#  file: rgbd_dataset"<<endl;
    ir_out<<"#  timestamp"<<"    "<<"filename"<<endl;

    rgb_out<<flush;
    d_out<<flush;
    // 稳定化
    k4a::capture capture;
    int iAuto = 0;//用来稳定,类似自动曝光
    int iAutoError = 0;// 统计自动曝光的失败次数
    while (true) {
        if (device.get_capture(&capture)) {
            std::cout << iAuto << ". Capture several frames to give auto-exposure" << std::endl;

            // 跳过前 n 个(成功的数据采集)循环,用来稳定
            if (iAuto != 30) {
                iAuto++;
                continue;
            } else {
                std::cout << "Done: auto-exposure" << std::endl;
                break;// 跳出该循环,完成相机的稳定过程
            }

        } else {
            std::cout << iAutoError << ". K4A_WAIT_RESULT_TIMEOUT." << std::endl;
            if (iAutoError != 30) {
                iAutoError++;
                continue;
            } else {
                std::cout << "Error: failed to give auto-exposure. " << std::endl;
                return -1;
            }
        }
    }
    std::cout << "-----------------------------------" << std::endl;
    std::cout << "----- Have Started Kinect DK. -----" << std::endl;
    std::cout << "-----------------------------------" << std::endl;
    // 从设备获取捕获
    k4a::image rgbImage;
    k4a::image depthImage;
    k4a::image irImage;
    k4a::image transformed_rgbImage;

    cv::Mat cv_rgbImage_with_alpha;
    cv::Mat cv_rgbImage_no_alpha;
    cv::Mat cv_depth;
    cv::Mat cv_depth_8U;
    cv::Mat cv_irImage;
    cv::Mat cv_irImage_8U;
    k4a_image_t lut = NULL;
    k4a_image_t undistorted_rgb = NULL;
    k4a_image_t undistorted_depth = NULL;
    interpolation_t interpolation_type = INTERPOLATION_NEARESTNEIGHBOR;
    k4a::calibration k4aCalibration = device.get_calibration(config.depth_mode, config.color_resolution);// Get the camera calibration for the entire K4A device, which is used for all transformation functions.
    k4a::transformation k4aTransformation = k4a::transformation(k4aCalibration);
    pinhole_t pinhole;
    pinhole = create_pinhole_from_xy_range(&k4aCalibration, K4A_CALIBRATION_TYPE_COLOR);

    cout << "resolution width: " << pinhole.width << endl;
    cout << "resolution height: " << pinhole.height << endl;
    cout << "principal point x: " << pinhole.px << endl;
    cout << "principal point y: " << pinhole.py << endl;
    cout << "focal length x: " << pinhole.fx << endl;
    cout << "focal length y: " << pinhole.fy << endl;
    
    
    
    int count=0;
    while (true)
        // for (size_t i = 0; i < 100; i++)
    {
        // if (device.get_capture(&capture, std::chrono::milliseconds(0)))
        if (device.get_capture(&capture)) {
            // rgb
            // * Each pixel of BGRA32 data is four bytes. The first three bytes represent Blue, Green,
            // * and Red data. The fourth byte is the alpha channel and is unused in the Azure Kinect APIs.
            rgbImage = capture.get_color_image();
#if DEBUG_std_cout == 1
            std::cout << "[rgb] " << "\n"
                << "format: " << rgbImage.get_format() << "\n"
                << "device_timestamp: " << rgbImage.get_device_timestamp().count() << "\n"
                << "system_timestamp: " << rgbImage.get_system_timestamp().count() << "\n"
                << "height*width: " << rgbImage.get_height_pixels() << ", " << rgbImage.get_width_pixels()
                << std::endl;
#endif

            // depth
            // * Each pixel of DEPTH16 data is two bytes of little endian unsigned depth data. The unit of the data is in
            // * millimeters from the origin of the camera.
            depthImage = capture.get_depth_image();
#if DEBUG_std_cout == 1
            std::cout << "[depth] " << "\n"
                << "format: " << depthImage.get_format() << "\n"
                << "device_timestamp: " << depthImage.get_device_timestamp().count() << "\n"
                << "system_timestamp: " << depthImage.get_system_timestamp().count() << "\n"
                << "height*width: " << depthImage.get_height_pixels() << ", " << depthImage.get_width_pixels()
                << std::endl;
#endif

            // ir
            // * Each pixel of IR16 data is two bytes of little endian unsigned depth data. The value of the data represents
            // * brightness.
            irImage = capture.get_ir_image();
#if DEBUG_std_cout == 1
            std::cout << "[ir] " << "\n"
                << "format: " << irImage.get_format() << "\n"
                << "device_timestamp: " << irImage.get_device_timestamp().count() << "\n"
                << "system_timestamp: " << irImage.get_system_timestamp().count() << "\n"
                << "height*width: " << irImage.get_height_pixels() << ", " << irImage.get_width_pixels()
                << std::endl;
#endif
            //深度图和RGB图配准

            auto transformed_depthImage=k4aTransformation.depth_image_to_color_camera(depthImage);
            cv_irImage = cv::Mat(irImage.get_height_pixels(), irImage.get_width_pixels(), CV_16U,
                                 (void *) irImage.get_buffer(), static_cast<size_t>(irImage.get_stride_bytes()));
            cv_irImage.convertTo(cv_irImage_8U, CV_8U, 1);
            k4a_image_create(K4A_IMAGE_FORMAT_CUSTOM,
                             pinhole.width,
                             pinhole.height,
                             pinhole.width * (int)sizeof(coordinate_t),
                             &lut);

            create_undistortion_lut(&k4aCalibration, K4A_CALIBRATION_TYPE_COLOR, &pinhole, lut, interpolation_type);

            k4a_image_create(K4A_IMAGE_FORMAT_DEPTH16,
                             pinhole.width,
                             pinhole.height,
                             pinhole.width * (int)sizeof(uint16_t),
                             &undistorted_depth);
            k4a_image_create(K4A_IMAGE_FORMAT_COLOR_BGRA32,
                             pinhole.width,
                             pinhole.height,
                             pinhole.width * (int)sizeof(uint32_t),
                             &undistorted_rgb);
            remap_BGRA(rgbImage.handle(), lut, undistorted_rgb);
            remap(transformed_depthImage.handle(), lut, undistorted_depth, interpolation_type);

            transformed_depthImage=k4a::image(undistorted_depth);
            rgbImage=k4a::image(undistorted_rgb);
            cv_depth = cv::Mat(transformed_depthImage.get_height_pixels(), transformed_depthImage.get_width_pixels(), CV_16U,
                               (void *) transformed_depthImage.get_buffer(), static_cast<size_t>(transformed_depthImage.get_stride_bytes()));
//            cv_depth= cv::Mat(depthImage.get_height_pixels(), depthImage.get_width_pixels(), CV_16U,
//                               (void *) depthImage.get_buffer(), static_cast<size_t>(depthImage.get_stride_bytes()));
            cv_rgbImage_with_alpha = cv::Mat(rgbImage.get_height_pixels(), rgbImage.get_width_pixels(), CV_8UC4,
                                             (void *) rgbImage.get_buffer());
            cv::cvtColor(cv_rgbImage_with_alpha, cv_rgbImage_no_alpha, cv::COLOR_BGRA2BGR);
            cv_depth.convertTo(cv_depth_8U, CV_8U, 1);




//            auto cv_undistorted_rgb= undistorted(cv_rgbImage_no_alpha,calib);
//            auto cv_undistorted_depth= undistorted(cv_depth,calib);
//            auto cv_undistorted_rgb= cv_rgbImage_no_alpha;
//            auto cv_undistorted_depth= cv_depth;

            // show image
//            cv::imshow("color", cv_rgbImage_no_alpha);
//            cv::imshow("depth", cv_depth_8U);
//            cv::imshow("ir", cv_irImage_8U);
            // save image
            double time_rgb = static_cast<double >(std::chrono::duration_cast<std::chrono::microseconds>(
                    rgbImage.get_device_timestamp()).count());
            auto prefix=std::to_string(count);
            std::string filename_rgb = prefix+".png";
            double time_d = static_cast<double >(std::chrono::duration_cast<std::chrono::microseconds>(
                    depthImage.get_device_timestamp()).count());

            std::string filename_d_8u = prefix+"_8u.png";
            std::string filename_d = prefix+".png";

            double time_ir = static_cast<double >(std::chrono::duration_cast<std::chrono::microseconds>(
                    irImage.get_device_timestamp()).count());
            std::string filename_ir = prefix+".png";
            imwrite("./rgb/"+filename_rgb, cv_rgbImage_no_alpha);
            imwrite("./depth/"+filename_d, cv_depth);
            imwrite("./depth/"+filename_d_8u,cv_depth_8U);
//            imwrite("./ir/"+filename_ir, cv_irImage_8U);

            std::cout<<"Acquiring!"<<endl;

            //写入depth.txt,rgb.txt文件
            rgb_out<<std::to_string(time_rgb/1000000)<<"    "<<"rgb/"<<filename_rgb<<endl;
            d_out<<std::to_string(time_d/1000000)<<"    "<<"depth/"<<filename_d<<endl;
            ir_out<<std::to_string(time_ir/1000000)<<"    "<<"ir/"<<filename_ir<<endl;

            rgb_out<<flush;
            d_out<<flush;
            ir_out<<flush;
            cv_rgbImage_with_alpha.release();
            cv_rgbImage_no_alpha.release();
            cv_depth.release();
            cv_depth_8U.release();
            cv_irImage.release();
            cv_irImage_8U.release();

            capture.reset();
            count+=1;
            //if (cv::waitKey(0) == 'q') {//按键采集,用户按下'q',跳出循环,结束采集
            //  std::cout << "----------------------------------" << std::endl;
            //   std::cout << "------------- closed -------------" << std::endl;
            //  std::cout << "----------------------------------" << std::endl;
            // break;
            // }
        } else {
            std::cout << "false: K4A_WAIT_RESULT_TIMEOUT." << std::endl;
        }
    }
    cv::destroyAllWindows();
    rgb_out<<flush;
    d_out<<flush;
    ir_out<<flush;
    rgb_out.close();
    d_out.close();
    ir_out.close();

    // 释放,关闭设备
    rgbImage.reset();
    depthImage.reset();
    irImage.reset();
    capture.reset();
    device.close();

    return 1;
}
       

               
          
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值