基于改进反电势模型的无感PMSM转子磁链定向控制仿真

  • 模型推导,以隐极式电机为例:
    u α = R s i s α + L 1 d i s α d t + p ψ ⃗ f cos ⁡ θ r u β = R s i s β + L 1 d i s β d t + p ψ ⃗ f sin ⁡ θ r u ⃗ α β = R s i ⃗ s α β + L 1 p i ⃗ α β + p ψ ⃗ f p ψ ⃗ f = u ⃗ α β − R s i ⃗ s α β − L 1 p i ⃗ α β ψ ⃗ f = ψ f e j ω e t p ψ ⃗ f = d ψ f d t e j ω e t + j ω e ψ f e j ω e t d ψ f d t e j ω e t + j ω e ψ f e j ω e t = u ⃗ α β − R s i ⃗ s α β − L 1 p i ⃗ α β d ψ f d t + j ω e ψ f = ( u ⃗ α β − R s i ⃗ s α β − L 1 p i ⃗ α β ) e − j ω e t u_{\alpha}=R_si_{s\alpha}+L_1\frac{di_{s\alpha}}{dt}+p\vec{\psi}_f\cos \theta _r \\ u_{\beta}=R_si_{s\beta}+L_1\frac{di_{s\beta}}{dt}+p\vec{\psi}_f\sin \theta _r \\ \vec{u}_{\alpha \beta}=R_s\vec{i}_{s\alpha \beta}+L_1p\vec{i}_{\alpha \beta}+p\vec{\psi}_f \\ p\vec{\psi}_f=\vec{u}_{\alpha \beta}-R_s\vec{i}_{s\alpha \beta}-L_1p\vec{i}_{\alpha \beta} \\ \vec{\psi}_f=\psi _fe^{j\omega _et} \\ p\vec{\psi}_f=\frac{d\psi _f}{dt}e^{j\omega _et}+j\omega _e\psi _fe^{j\omega _et} \\ \frac{d\psi _f}{dt}e^{j\omega _et}+j\omega _e\psi _fe^{j\omega _et}=\vec{u}_{\alpha \beta}-R_s\vec{i}_{s\alpha \beta}-L_1p\vec{i}_{\alpha \beta} \\ \frac{d\psi _f}{dt}+j\omega _e\psi _f=\left( \vec{u}_{\alpha \beta}-R_s\vec{i}_{s\alpha \beta}-L_1p\vec{i}_{\alpha \beta} \right) e^{-j\omega _et} uα=Rsisα+L1dtdisα+pψ fcosθruβ=Rsisβ+L1dtdisβ+pψ fsinθru αβ=Rsi sαβ+L1pi αβ+pψ fpψ f=u αβRsi sαβL1pi αβψ f=ψfejωetpψ f=dtdψfejωet+jωeψfejωetdtdψfejωet+jωeψfejωet=u αβRsi sαβL1pi αβdtdψf+jωeψf=(u αβRsi sαβL1pi αβ)ejωet
  • 搭建仿真模型:
    在这里插入图片描述
  • 改进反电势模型如下:
    在这里插入图片描述
  • 仿真结果:
    在这里插入图片描述
    存在的问题: 转速为负时,观测器发散。
    问题分析:
    根据反电势计算公式:
    d ψ f d t + j ω e ψ f = ( u ⃗ α β − R s i ⃗ s α β − L 1 p i ⃗ α β ) e − j ω e t \frac{d\psi _f}{dt}+j\omega _e\psi _f=\left( \vec{u}_{\alpha \beta}-R_s\vec{i}_{s\alpha \beta}-L_1p\vec{i}_{\alpha \beta} \right) e^{-j\omega _et} dtdψf+jωeψf=(u αβRsi sαβL1pi αβ)ejωet
  • 正转时,当观测的d轴超前实际d轴,导致ed为正值。eq为正并减小。此时flux因为ed的积分作用增大,eq的减小和观测的flux的增大导致we减小。从而减慢观测速度。
  • 正转时,当观测d轴滞后实际d轴,导致ed为负,eq减小,此时flux减小,在反馈作用下,观测速度增加;
  • 反转时,当观测转速增大时,此时矢量顺时针旋转。若观测准确情况下,ed为0,eq为负值。当观测d轴超前实际d轴时,ed为正,此时flux增加,eq增大(绝对值减小),观测转速减小;
  • 反转时,当观测速度减小时,此时ed为负,esq减小,导致flux减小,|esq/flux|逐渐增大,从而时间观测速度提高;
  • ed–eq前馈修正系数设计:
    k o p t ∗ e d ∗ s i g n ( n o b s ) k_{opt}*e_d*sign\left( n_{obs} \right) koptedsign(nobs)
    当转速为负时,将反馈项转变为正值,加速eq的绝对值减小,从而迅速减慢we的顺时针旋转速度,d轴将减慢旋转速度,保证快速收敛。
    采用该修正方式后:正反转观测正常。在这里插入图片描述
    在这里插入图片描述
  • 采用改进反电势估计的转速和角度进行反馈闭环,运行结果如下:可以看到正反转加载、极限反转正常,但在0速额定负载下无法运行。
  • 附录:
clc;clear;
%% 永磁同步电机仿真控制
TYPE = 1; % 0:等功率   1 :等幅值  2:MD880
CPC = 1; % 1: 薛承基解耦  ;2 :待定
motormodel =2;% 1:数字模型;2:物理模型
motorSel = 1; % 1:浙江大学李冉博士论文的电机参数
delay_comp =1.5; %发波延迟补偿1.5Ts
% delay_comp_flux =1;%采样延迟
%% 变流器参数
Um = 100*1.414*1.5;
Fc = 3000;
T_OH = 1/(Fc*2);
Udc = Um*1.05;
Tdelay= 5*10^-6;
Tnarrow=0;
Tinv=2*10^-6;
Td = T_OH * 1.5;
%% 电机参数
Un = 380;%V 线电压
Pn = 1.5;%Kw
fn = 66.67;%Hz
In = 9; %A
Rs=1.2; %Ω
Ld=4.8e-3;%H
Lq=4.8e-3;%H
L1 = (Ld+Lq)/2;
L2 = (Ld-Lq)/2;
J=0.002;% kg.m^2
Bm = 0; % 负载摩擦阻尼系数
Np=4;
Flux = 0.092;  % 磁链
speed = 60*fn/Np;
Te = 1.5*Flux*Np*In*sqrt(2);
%% 限幅计算
Imax = 1.5*In*sqrt(2);  % Max stator current (peak value)
Tmax = 1.5*Np*Flux*Imax; % Max lectromagnetic torque
omegam_nom = 2*pi*fn/Np; % Nominal mechanical rotor speed
Pmax = omegam_nom*Tmax;  % Maximum power
%% 计算状态矩阵、输入矩阵和输出矩阵

%% 电流环路设计
%考虑演示环节,1型零极点对消 , PI采用串联型  kp+ki/s
%% d轴参数设计
acrkp_d = 0.5/Td*Ld;
acrki_d = Rs/Ld * acrkp_d;
%% q轴参数设计
acrkp_q = 0.5/Td*Lq;
acrki_q = Rs/Lq * acrkp_q;
%% 2. 速度环采用带宽设计方法
%% 电流环闭环传递函数: 0.5/Td /(Td*s^2+s) 
% 电流环闭环传递函数: 0.5/Td/(Td*s^2 + s + 1/(2*Td) )
% 简化的电流闭环传递函数: 0.5/Td /(s + 1/(2*Td)) 
% 速度环加入滤波环节: 1/(Tdelay*s+1)
TspdLpf = 0.005; % s
%% 速度环模型推导:
% kp(s+ki/kp)/s * 1/(3/2*Np*Flux) *( 0.5/Td /(s + 1/(2*Td)) ) * 3/2*Flux*Np * 1/(J*s)
% 化简可得:
%      kp(s+ ki/kp)
%   -------------------
%     Js^2* (2Td*s+1)
% 考虑速度环滤波后:
Tall = 2* Td + TspdLpf;  % 速度环总时间延迟
%           kp(s+ ki/kp)
%   ------------------------
%    J*Tall* s^2 * (s+1/Tall)     
%% 速度环中频宽设计
% 带宽取中频宽的几何平均
wspeed = sqrt(1/Tall * (1/Tall)/6);  % 取几何平均值
%% 速度环kp计算
%solve( kp*(sqrt(wspeed^2+ (1/(6*Tall))^2))/( J/Tall* wspeed^2 * sqrt(wspeed^2+(1/Tall)^2) )==1,kp);
asr_kp=J*Tall* wspeed^2 * sqrt(wspeed^2+(1/Tall)^2)/(sqrt(wspeed^2+ (1/(6*Tall))^2));
% 中频宽取6;
%ki/kp = (1/Tall)/6
asr_ki = asr_kp/Tall/ 6;
%% 观测速度环滤波:
% s=tf('s');
% tor = 0.005; % 滤波时间常数
% Gs = 1/(tor*s+1);% 低通滤波传递函数
% Gz = c2d(Gs,T_OH);
%% 观测器
k_opt = 1;
本应用笔记着重于适用于电器的基于PMSM的无传感器FOC 控制, 这是因为该控制技术在电器的电机控制方面有着无可比拟的成本优势。 无传感器 FOC 技术也克服了在某些应用上的限制,即由于电机被淹或其线束放置位置的限制等问题,而无法部署位置或速度传感器。 由于PMSM使用了由转子上的永磁体所产生的恒定转子磁场,因此它尤其适用于电器产品。 此外,其定子磁场是由正弦分布的绕组产生的。 与感应电机相比, PMSM 在其尺寸上具有无可比拟的优势。 由于使用了无刷技术,这种电机的电噪音也比直流电机小。 矢量控制综述 间接矢量控制的过程总结如下: 1. 测量 3 相定子电流。 这些测量可得到 ia 和 ib 的 值 。 可通过以下公式计算出 Ic : i a + ib + ic = 0。 2. 将 3 相电流变换至 2 轴系统。 该变换将得到变量 i α和iβ,它们是由测得的ia和ib以及计算出的ic值 变换而来。从定子角度来看, iα 和 iβ 是相互正交 的时变电流值。 3. 按照控制环上一次迭代计算出的变换角,来旋转 2 轴系统使之与转子磁通对齐。 iα 和 iβ 变量经过 该变换可得到 Id 和 Iq。 Id 和 Iq 为变换到旋转坐标 系下的正交电流。 在稳态条件下, Id和Iq是常量。 4. 误差信号由 Id、 Iq 的实际值和各自的参考值进行 比较而获得。 • Id 的参考值控制转子磁通 • I q 的参考值控制电机的转矩输出 • 误差信号是到 PI 控制器的输入 • 控制器的输出为 Vd 和 Vq,即要施加到电机 上的电压矢量 5. 估算出新的变换角,其中 vα、 vβ、 iα 和 iβ 是输 入参数。 新的角度可告知 FOC 算法下一个电压 矢量在何处。 6. 通过使用新的角度,可将 PI 控制器的 Vd 和 Vq 输出值逆变到静止参考坐标系。 该计算将产生下 一个正交电压值 vα 和 vβ。 7. v α 和 vβ 值经过逆变换得到 3 相值 va、 vb 和 vc。 该 3 相电压值可用来计算新的 PWM 占空比值, 以生成所期望的电压矢量。 图 6 显示了变换、 PI 迭代、逆变换以及产生 PWM 的整个过程。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值