lmsys.org最新的LLM排行榜

lmsys.org

Large Model Systems Organization (LMSYS Org) 是一个开放的研究组织,由加州大学伯克利分校的学生和教师与加州大学圣地亚哥分校和卡内基梅隆大学合作创立。

他们的目标是通过共同开发开放数据集、模型、系统和评估工具,让每个人都能访问大型模型。工作包括机器学习和系统方面的研究。他们训练大型语言模型并使其广泛可用,创建了Vicuna and FastChat-T5! 模型,同时还开发分布式系统以加速其训练和推理。

地址在这里:https://lmsys.org/

LLM排行榜

lmsys.org 组织每一周都会发布一个LLM排行榜排行榜,最新一期是2023 年 5 月 25 日发布的,排行榜如下:

在这里插入图片描述
在这个版本中,新加入了如下的大语言模型:

在此更新中,我们很高兴欢迎以下聊天机器人加入竞技场:

  • Google PaLM 2

  • Anthropic Claude-instant-v1

  • MosaicML MPT-7B-聊天

  • Vicuna-7B

各个语言的得分情况如下:

在这里插入图片描述
Google 的 PaLM 2 是这次加入的重要的聊天模型,目前在Chatbot Arena排行榜上排名第6位。然而,根据分析,PaLM 2 在某些方面存在一些不足:

  1. 更严格的监管:PaLM 2 似乎受到更严格的监管,导致它在回答某些问题时放弃回应。这也导致它在与较弱的聊天机器人对战时表现不佳。

  2. 有限的多语言能力:目前提供的 PaLM 2 版本在非英语问题上的回答能力有限。在非英语排行榜上,PaLM 2 排名第16位。

  3. 不令人满意的推理能力:PaLM 2 在某些入门级推理任务上表现不佳,相较于其他聊天机器人,其推理能力有待提高。

在删除非英语对话和PaLM 2未提供答案的所有对话后,计算出的 Elo 评分代表了 PaLM 2 在竞技场中的假设上限。

LMSYS Org官网:https://lmsys.org/

更多AI工具,参考Github-AiBard123国内AiBard123

### marked.js 结合低级语言模型的应用 marked.js 是一个用于解析和编译 Markdown 的 JavaScript 库[^1]。当提及到如何利用 low-level models (LLM),通常是指通过某些接口或 API 来调用这些预训练的语言模型来增强应用程序的功能。 对于希望集成 LLMs 到基于 marked.js 的项目中的开发者来说,可以考虑创建一个中间层服务,该服务负责接收来自前端的请求并转发给 LLM 进行处理,之后再将响应返回给客户端应用。这里有一个简单的架构图说明这一过程: ```plaintext Client -> Frontend (with marked.js) -> Backend Service -> LLM API -> Response back to Client ``` #### 实现方案概述 为了实现上述流程,在服务器端可以选择支持异步操作的技术栈如 Node.js 或者 Python Flask/Django 等框架,并安装相应的 SDK 或库以便于同所选 LLM 平台交互。下面给出一段伪代码作为概念验证: ```javascript // 假设这是运行在 Express 上的服务端逻辑 const express = require('express'); const axios = require('axios'); // 用来发起 HTTP 请求至 LLM API const app = express(); app.post('/process-markdown', async function(req, res){ const markdownContent = req.body.markdown; try { let processedText = await callLlmApi(markdownContent); // 将处理后的文本传递给 marked.js 渲染成 HTML let renderedHtml = marked.parse(processedText); res.json({html: renderedHtml}); } catch(error){ console.error(`Error processing request ${error}`); res.status(500).send("An error occurred while processing your request."); } }); async function callLlmApi(text){ // 此处应替换为实际的目标 LLM API 地址以及必要的认证信息 const response = await axios.post('https://example.com/llm-endpoint', {text}); return response.data.processed_text; } ``` 这段代码展示了如何设置一个 RESTful 接口 `/process-markdown` ,它接受包含 Markdown 文本的数据包,将其发送给指定的 LLM API 处理后再由 `marked.js` 解析渲染最终的结果。 请注意这只是一个非常基础的例子,具体实施细节会依赖于使用的特定 LLM 提供商及其文档指南[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

go2coding

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值