一、目录
1.量化对象有哪些?
2.常见的量化精度有哪些?
3.什么是后量化?
4. AWQ量化相关知识
5. GPQT量化相关知识
6. AWQ量化与GPTQ量化对比
7. Smooth quant 量化相关知识
8. 如何选择量化类型?
10. 评估量化对各种NLP任务的影响
11. 评估量化对不同LLMs的影响
12. 不同的Tensor类型对量化的影响
13. 不同的量化方法对模型的影响
二、实现
-
量化对象有哪些?
可以对模型参数(weight)、激活值(activation)或者梯度(gradient)做量化。
通常而言,模型的参数分布较为稳定,因此对参数 weight 做量化较为容易。
然而,模型的激活值往往存在异常值,直接对其做量化,会降低有效的量化格点数,导致精度损失严重,因此,激活值的量化需要更复杂的处 理方法(如 SmoothQuant)
常见的量化精度有哪些?
可以将模型量化为 int4、int8,fp16 等整型数据格式。 -
后量化 PTQ?
模型训练后进行量化处理,旨在提高推理速度、降低显存。 -
AWQ量化相关知识
- AWQ 量化原理:AWQ是一种权重量化方法。通过保护更“重要”的权重不进行量化,从而在不进行训练的情况下提高准确率。
- 如何保护重要权重?
作者提出了一种 激活感知权重量化方法。即通过保