创作不易,您的关注、点赞、收藏和转发是我坚持下去的动力!
大家有技术交流指导、论文及技术文档写作指导、项目开发合作的需求可以私信联系我。
迭代滤波算法简介
迭代滤波算法是一种用于参数估计的数值优化方法,特别适用于隐藏状态的时序模型(如随机波动率模型)。这些模型通常包含复杂的动态系统,系统的状态是不可直接观察的,而是通过观测数据间接推断出来的。
主要步骤:
- 初始化:首先,给定参数的初始猜测值,并定义观测数据的分布模型。
- 扰动参数:在每次迭代中,对参数进行随机扰动,以创建一组参数样本。
- 过滤步骤:使用标准的滤波方法(如粒子滤波或卡尔曼滤波)估计模型的隐藏状态。
- 更新参数:通过比较观测数据与模型预测值的差异,使用最大似然估计或其他优化方法来更新参数估计值。
- 重复迭代:重复扰动、过滤和更新步骤,直到参数估计值收敛。
迭代滤波的主要优点是它可以处理模型的非线性特征,并且适用于一些标准方法无法有效处理的复杂动态系统。
Python 实现示例
以下是一个使用Python实现迭代滤波算法的简单示例。假设我们有一个简单的线性状态空间模型,其中观测值 y_t
与状态 x_t
有线性关系,且 x_t
随时间演化。
import numpy as np
from scipy.stats import norm
# 定义系统模型
def state_transition(x, theta):
return theta[0] * x
def observation_model(x, theta):
return theta[1] * x
# 生成模拟数据
def<