线性系统
文章平均质量分 81
爱趣无穷
认真科研,热爱生活
展开
-
模型预测控制MPC2(无约束MPC,Unconstrained Model Predictive Control)
**优化本身并不能保证系统的稳定性**,不同的control horizon会导致不同的增益K,K不一样当然A-BK就不一样,其中N=4和N=3这两组特征值肯定在单位圆内,N=2时,虽然在单位圆内,但是已经非常接近单位圆边缘了,这个时候系统是稳定的,但是这个时候的过渡过程已经没有那么好了;但是N=1时,系统已经有一个特征值在单位圆外了,这个时候系统已经不稳定了,N取得太小,往后预测并不是真正能够反应系统实际性能的预测,所以基于这样的预测做出来的优化控制,当然没有办法保证系统的稳定性。......原创 2022-07-17 18:25:15 · 2137 阅读 · 3 评论 -
LQR控制实例、传递函数与状态矩阵相互转换
LQR控制实例、传递函数与状态矩阵相互转换原创 2022-07-12 11:12:38 · 1725 阅读 · 0 评论 -
LQR线性二次型调节器3(Discrete-time system Linear-Quadratic Regulator design,离散系统分析及MATALB实例)
### 3.1 离散系统中,函数*dare*()和*dlqr*()计算的结果相等,*K*,*P*,*r*完全相同==; ### 3.2 公式*k*=(*B^T^PB*+*R*)^-1^*B^T^PA*求解的*k*和*dlqr*()函数、*dare*()函数求解的*k*结果相同==; ### 3.3 函数*dare*()和*dlqr*()都可以直接求解Riccati方程的解*P*、以及最优反馈增益矩阵K,且他们求解的P和*dlyap*()函数求解的*P*不同; ### 3.4 以上结论同连续系..原创 2022-07-09 11:39:52 · 3652 阅读 · 0 评论 -
模型预测控制MPC3(无约束MPC,Unconstrained Model Predictive Control)
离散时间系统无约束模型预测控制(Unconstrain Model Predictive Control for Discrete-time system )原创 2022-07-08 11:44:32 · 918 阅读 · 0 评论 -
LQR线性二次型调节器2(Continuous-time system Linear-Quadratic Regulator design,连续系统分析及MATALB实例)
**注:**MATLAB中LQR函数有==连续==和==离散==两种,本篇文章只分析==连续时间系统lqr()函数、care()函数==,==离散时间系统LQR()函数==将单独写文章进行分析!敬请关注,谢谢~原创 2022-07-06 14:22:45 · 2110 阅读 · 0 评论 -
Lyapunov稳定性分析3(离散时间系统)
(1)*Lyapunov*渐近稳定的**充要条件**(**第一方法**):==A的特征值模均小于1==;(2)*Lyapunov*渐近稳定的**充要条件**(**第二方法**):对于==任意的**正定矩阵Q**==,存在**==正定矩阵P==**满足Lyapunov方程:...............原创 2022-07-06 09:33:38 · 8925 阅读 · 3 评论 -
LQR线性二次型调节器1(Continuous-time system Linear-Quadratic Regulator design,连续系统LQR理论推导)
LQR(线性二次型调节器,Linear-Quadratic Regulator (LQR) design)(1)选择参数矩阵Q,R(2)求解Riccati方程得到矩阵P(3)根据P计算(4)计算控制量原创 2022-07-03 11:43:21 · 1352 阅读 · 0 评论 -
Lyapunov稳定性分析2(连续时间系统)
线性系统**,只须求出系数矩阵的特征值即可判断其稳定性**李雅普诺夫第二方法**:又称**直接法**,其基本特点是不必求解系统的状态方程,就能对其在**平衡点处**的**稳定性**进行分析和做出判断,且这种判断是准确的,而不包含近似.......................................................................................原创 2022-07-01 19:13:47 · 4542 阅读 · 0 评论