张量习题

1.Prove that v 1 , … , v r ∈ V ∗ v_1,\dots,v_r\in V^* v1,,vrV is linearly dependent if and only if
v 1 ∧ ⋯ ∧ v r = 0 v_1\wedge\dots\wedge v_r=0 v1vr=0

Proof:
If v 1 , …   . v r v^1,\dots.v^r v1,.vr is linearly dependent, ∃ v r = a 1 v 1 + ⋯ + a r − 1 v r − 1 \exists v^r=a_1v^1+\dots +a_{r-1}v^{r-1} vr=a1v1++ar1vr1, thus
v 1 ∧ ⋯ ∧ v r = ∑ λ = 1 r − 1 a λ v 1 ∧ ⋯ ∧ v r − 1 ∧ v λ = 0 v^1\wedge \dots \wedge v^r=\sum_{\lambda=1}^{r-1}a_{\lambda}v^1\wedge \dots\wedge v^{r-1}\wedge v^{\lambda}=0 v1vr=λ=1r1aλv1vr1vλ=0

If v 1 , … , v r v^1,\dots,v^r v1,,vr is linearly independent, we can enlarge them to be a basis of V ∗ : { v 1 , … , v r , … , v n } . V^*:\{v^1,\dots,v^r,\dots,v^n\}. V:{v1,,vr,,vn}. { e i } \{e_i\} {ei} is the conjugate basis of { v i } \{v^i\} {vi} in V V V, thus
v 1 ∧ ⋯ ∧ v r ( e 1 , … , e r ) = δ i 1 … i r 1 … r v i 1 ( e 1 , … , e r ) = ( v 1 ( e 1 ) … v 1 ( e r ) ⋮ ⋮ v r ( e 1 ) … v r ( e r ) ) = 1 \begin{aligned} v^1\wedge\dots\wedge v^r(e_1,\dots,e_r)&=\delta^{1\dots r}_{i_1\dots i_r}v^{i_1}(e_1,\dots ,e_r)\\ &=\begin{pmatrix} v^1(e_1)& \dots & v^1(e_r)\\ \vdots&&\vdots\\ v^r(e_1) & \dots & v^r(e_r) \end{pmatrix}\\ &=1 \end{aligned} v1vr(e1,,er)=δi1ir1rvi1(e1,,er)=v1(e1)vr(e1)v1(er)vr(er)=1

thus, v 1 ∧ ⋯ ∧ v r ≠ 0. v^1\wedge \dots \wedge v^r\neq 0. v1vr=0.

2.Let F : V → W F: V\rightarrow W F:VW be a linear map, prove that for Φ ∈ A r ( W ) \Phi\in A^r(W) ΦAr(W) and Ψ ∈ A s ( W ) \Psi\in A^s(W) ΨAs(W)
F ∗ ( Φ ∧ Ψ ) = F ∗ Φ ∧ F ∗ Ψ . F^*(\Phi\wedge\Psi)=F^*\Phi\wedge F^*\Psi. F(ΦΨ)=FΦFΨ.

Proof:

∀ u 1 , … , u r + s ∈ V \forall u_1,\dots,u_{r+s}\in V u1,,ur+sV, we have:
( F ∗ ( Φ ∧ Ψ ) ) ( u 1 , … , u r + s ) = ( Φ ∧ Ψ ) ( F ( u 1 ) , … , F ( u r + s ) ) = 1 r ! s ! δ 1 … r + s i 1 … i r + s Φ ( F ( u i 1 ) , … , F ( u i r ) ) ⋅ Ψ ( F ( u i r + 1 ) , … , F ( u i r + s ) ) = ( F ∗ Φ ) ∧ ( F ∗ Ψ ) ( u 1 , … , u r + s ) \begin{aligned} &(F^*(\Phi\wedge\Psi))(u_1,\dots,u_{r+s})\\ &=(\Phi\wedge\Psi)(F(u_1),\dots,F(u_{r+s}))\\ &=\frac{1}{r!s!}\delta^{i_1\dots i_{r+s}}_{1\dots {r+s}}\Phi(F(u_{i_1}),\dots,F(u_{i_r}))\cdot \Psi(F(u_{i_{r+1}}),\dots,F(u_{i_{r+s}}))\\ &=(F^*\Phi)\wedge (F^*\Psi)(u_1,\dots,u_{r+s}) \end{aligned} (F(ΦΨ))(u1,,ur+s)=(ΦΨ)(F(u1),,F(ur+s))=r!s!1δ1r+si1ir+sΦ(F(ui1),,F(uir))Ψ(F(uir+1),,F(uir+s))=(FΦ)(FΨ)(u1,,ur+s)

3.Deduce the transformation formula of coefficients of a ( r , s ) (r,s) (r,s)-tensor under the change
of local coordinates.

Proof:

Suppose ( U , φ ; x i ) (U,\varphi;x^i) (U,φ;xi) is a chart of M M M, ( r , s ) (r,s) (r,s)-tensor Φ \Phi Φ can be locally represented:
Φ ( x ) = Φ j 1 … j s i 1 … i r ( x ) ∂ ∂ x i 1 ⊗ ⋯ ⊗ ∂ ∂ x i r ⊗ d x j 1 ⊗ ⋯ ⊗ d x j \Phi(x)=\Phi^{i_1\dots i_{r}}_{j_1\dots j_s}(x)\frac{\partial}{\partial x^{i_1}}\otimes\dots\otimes\frac{\partial}{\partial x^{i_r}}\otimes dx^{j_1}\otimes\dots\otimes dx^j Φ(x)=Φj1jsi1ir(x)xi1xirdxj1dxj

Thus for another chart ( V , ϕ ; x ′ i ) (V,\phi;x'^i) (V,ϕ;xi), we have the transformation formula on the intersection:

Φ j 1 … j s i 1 … i r ( x ′ ) = Φ k 1 … k s h 1 … h r ( x ) ∂ x ′ i 1 ∂ x h 1 … ∂ x ′ i r ∂ x h r ∂ x ′ k 1 ∂ x ′ j 1 … ∂ x ′ k s ∂ x ′ j s \Phi^{i_1\dots i_{r}}_{j_1\dots j_s}(x')=\Phi^{h_1\dots h_{r}}_{k_1\dots k_s}(x)\frac{\partial x'^{i_1}}{\partial x^{h_1}}\dots\frac{\partial x'^{i_r}}{\partial x^{h_r}}\frac{\partial x'^{k_1}}{\partial x'^{j_1}}\dots \frac{\partial x'^{k_s}}{\partial x'^{j_s}} Φj1jsi1ir(x)=Φk1ksh1hr(x)xh1xi1xhrxirxj1xk1xjsxks

4.Show that any C ∞ ( M ) C^{\infty}(M) C(M)-linear map
τ : Λ 1 ( M ) × ⋯ × Λ 1 ( M ) ⏟ s × X ( M ) × … X ( M ) ⏟ r → C ∞ ( M ) \tau:\underbrace{\Lambda^1(M)\times\dots\times\Lambda^1(M)}_{s}\times\underbrace{\mathscr{X}(M)\times\dots\mathscr{X}(M)}_r\rightarrow C^{\infty}(M) τ:s Λ1(M)××Λ1(M)×r X(M)×X(M)C(M)
can be identified with a ( s , r ) (s,r) (s,r)-tensor field.

Proof:
We only show the result of ( 0 , 1 ) (0,1) (0,1)-tensor field, for the situation of ( r , s ) (r,s) (r,s)-tensor can be proved by Cartesian product of every vector field, and it’s too long to write completely.

Suppose we have a linear map τ : X ( M ) → C ∞ ( M ) \tau: \mathscr{X}(M)\rightarrow C^{\infty}(M) τ:X(M)C(M), s.t. ∀ v ∈ X ( M ) \forall v\in\mathscr{X}(M) vX(M) and μ ∈ C ∞ ( M ) \mu\in C^{\infty}(M) μC(M) we have:
τ ( μ ⋅ v ) = μ ⋅ τ ( v ) \tau(\mu\cdot v)=\mu\cdot\tau(v) τ(μv)=μτ(v)

We need to find out a ( 0 , 1 ) (0,1) (0,1)-tensor field τ ~ \tilde{\tau} τ~ on M M M, s.t. ∀ x 0 ∈ M \forall x_0\in M x0M:
τ ~ ( x 0 ) ( X ( x 0 ) ) = ( τ ( X ) ) ( x 0 ) , ∀ X ∈ X ( M ) \tilde{\tau}(x_0)(X(x_0))=(\tau(X))(x_0), \forall X\in \mathscr{X}(M) τ~(x0)(X(x0))=(τ(X))(x0),XX(M)

First, we hvae τ : X ( M ) → C ∞ ( M ) \tau:\mathscr{X}(M)\rightarrow C^{\infty}(M) τ:X(M)C(M) is local defined, X , Y ∈ X ( M ) X,Y\in\mathscr{X}(M) X,YX(M), and for open subset U ⊂ M U\subset M UM, X ∣ U = Y ∣ U X|_U=Y|_U XU=YU, we have τ ( X ) ∣ U = τ ( Y ) ∣ U ∈ C ∞ ( U ) \tau(X)|_U=\tau(Y)|_U\in C^{\infty}(U) τ(X)U=τ(Y)UC(U):

By the partition of unity, f ⋅ ( X − Y ) f\cdot (X-Y) f(XY) is a zero vector field on M M M.

τ ( 0 ) = τ ( 0 ) + τ ( 0 ) ⇒ τ ( 0 ) = 0 \tau(0)=\tau(0)+\tau(0)\Rightarrow \tau(0)=0 τ(0)=τ(0)+τ(0)τ(0)=0 on zero vector field.

thus, 0 = τ ( f ⋅ ( X − Y ) ) = f ⋅ ( τ ( X ) − τ ( Y ) ) 0=\tau(f\cdot (X-Y))=f\cdot (\tau(X)-\tau(Y)) 0=τ(f(XY))=f(τ(X)τ(Y)), thus we do have τ ( X ) ∣ U = τ ( Y ) ∣ U \tau(X)|_U=\tau(Y)|_U τ(X)U=τ(Y)U.

Suppose x 0 ∈ ( U ; x i ) x_0\in(U;x^i) x0(U;xi) is a chart, and v ∈ X ( U ) v\in\mathscr{X}(U) vX(U), thus
v = ∑ i v i ∂ ∂ x i v=\sum_iv^i\frac{\partial}{\partial x^i} v=ivixi

thus, τ ( v ) = ∑ i v i ⋅ τ ( ∂ ∂ x i ) \tau(v)=\sum_iv^i\cdot\tau(\frac{\partial}{\partial x^i}) τ(v)=iviτ(xi)

Then, we can define τ ~ ( x 0 ) ∈ T x 0 ∗ M \tilde{\tau}(x_0)\in T^*_{x_0}M τ~(x0)Tx0M for x 0 ∈ M x_0\in M x0M:

∀ v 0 ∈ T x 0 M \forall v_0\in T_{x_0}M v0Tx0M, v ∈ X ( U ) v\in\mathscr{X}(U) vX(U) is a extension of v 0 v_0 v0 at U U U whcih contains x 0 x_0 x0 , s.t. v ( x 0 ) = v 0 v(x_0)=v_0 v(x0)=v0, and
( τ ~ ( x 0 ) ) ( v 0 ) = ( τ ( v ) ) ( x 0 ) (\tilde{\tau}(x_0))(v_0)=(\tau(v))(x_0) (τ~(x0))(v0)=(τ(v))(x0)

and τ ~ ( x 0 ) : T x 0 M → R \tilde{\tau}(x_0):T_{x_0}M\rightarrow \mathbb{R} τ~(x0):Tx0MR is linear, thus τ ~ ( x 0 ) ∈ T x 0 ∗ M \tilde{\tau}(x_0)\in T^*_{x_0}M τ~(x0)Tx0M.

In ( U ; x i ) (U;x^i) (U;xi), we have:
τ ~ ∣ U = ∑ i = 1 m τ ~ ( ∂ ∂ x i ) d x i \tilde{\tau}|_U=\sum^m_{i=1}\tilde{\tau}(\frac{\partial}{\partial x^i})dx^i τ~U=i=1mτ~(xi)dxi

τ ~ ( ∂ ∂ x i ) ( x 0 ) = τ ~ ( x 0 ) ( ∂ ∂ x i ) = τ ( ∂ ∂ x i ) ( x 0 ) , ∀ x 0 ∈ U \tilde{\tau}(\frac{\partial}{\partial x^i})(x_0)=\tilde{\tau}(x_0)(\frac{\partial}{\partial x^i})=\tau(\frac{\partial}{\partial x^i})(x_0), \forall x_0\in U τ~(xi)(x0)=τ~(x0)(xi)=τ(xi)(x0),x0U

Thus,
τ ~ ( ∂ ∂ x i ) = τ ( ∂ ∂ x i ) ∈ C ∞ ( U ) \tilde{\tau}(\frac{\partial}{\partial x^i})=\tau(\frac{\partial}{\partial x^i})\in C^{\infty}(U) τ~(xi)=τ(xi)C(U)

thus τ ~ \tilde{\tau} τ~ is cotangent vector field, and ∀ v ∈ X ( M ) \forall v\in \mathscr{X}(M) vX(M), we have τ ~ ( v ) = τ ( v ) \tilde{\tau}(v)=\tau(v) τ~(v)=τ(v)

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 《张量分析》是由黄克智编写的一本专门讲述张量分析的教材,该书以清晰简明的方式介绍了张量分析的基本概念和原理。 张量分析是应用数学中的一个重要分支,主要研究张量及其性质、变换以及应用。它是描述物体在不同坐标系之间的相互关系以及变化规律的有效方法。 《张量分析》首先介绍了向量和张量的基本概念,包括张量的表示、算术运算以及坐标变换等内容。随后,书中详细阐述了张量的导数、积分以及微分几何的相关知识。此外,该书还探讨了张量的应用领域,如连续介质力学、电磁学、弹性力学以及流体力学等。 与其他类似教材相比,该书的特点在于其深入浅出的教学风格和丰富的实例和练习题。黄克智教授善于从直观的角度解释抽象概念,帮助学生理解和掌握难点知识。此外,书中提供了大量的实例和练习题,可供读者巩固所学知识,培养问题解决能力。 《张量分析》这本教材对于学习和研究工程、物理、计算机科学等领域的学生和从业人员来说是一本非常实用的参考书。不仅可以帮助读者建立对张量分析的深刻理解,还可以为他们提供解决实际问题的工具和方法。无论是对于初学者还是有一定基础的人士来说,该书都是一本值得阅读的精彩教材。 ### 回答2: 《张量分析 黄克智 pdf》是一本关于张量分析的书籍,作者是黄克智。张量分析是数学中的一个分支,主要研究向量和标量在多维空间中的扩展,以及相关的运算和性质。这个领域的研究对于物理学、工程学以及应用数学等领域都具有重要的意义。 黄克智是中国著名数学家,他对张量分析的研究和贡献有着卓越的成就。他在这本书中系统地介绍了张量分析的基本概念、定义、运算和应用。通过这本书,读者可以全面了解张量分析的理论和方法,并能应用于实际问题的求解中。 这本书的PDF版具有许多优点。首先,PDF格式使得书籍可以在电脑、平板电脑和手机等多种设备上进行阅读,便于读者随时随地学习。其次,PDF格式可以实现文字和图像的高质量展示,使得读者能够清晰地理解和掌握书中的内容。此外,PDF版还可以进行文字搜索、书签标注和拷贝等功能,方便读者更好地使用和管理书籍。 总之,《张量分析 黄克智 pdf》是一本权威且实用的张量分析参考书籍,通过阅读这本书,读者不仅可以深入了解张量分析的理论知识,还可以通过实践应用来提升自己的技能。无论是对于专业从事相关领域的人士还是对于对数学感兴趣的读者来说,这本书都是一本值得阅读和学习的好书。 ### 回答3: 《张量分析 黄克智 pdf》是一本关于张量分析的书籍,作者是黄克智。张量分析是数学中的一个重要分支,它主要研究不同坐标系下的张量及其相互转换的规则,广泛应用于物理学、工程学等领域。 这本书以系统的方式介绍了张量分析的基本概念、理论和方法。书中内容包括张量及其代数运算、张量及其坐标系、张量的微分、张量的应用等。通过详细的数学推导和具体的例子,读者可以深入理解张量分析的核心思想和应用技巧。 黄克智是中国著名的数学家和教育家,他在数学基础教育和研究领域有着重要的贡献。他在本书中采用简洁明晰的语言,结合大量的实例和图表,使复杂的数学理论更加易于理解和应用。 这本书的主要读者对象是高等数学专业的学生和研究者,也适合物理学、工程学等相关专业的学生和从业人员参考。无论是作为教材还是参考书,这本书都能帮助读者系统地学习和应用张量分析的知识。 总的来说,《张量分析 黄克智 pdf》是一本丰富而全面的张量分析教材,对于学习者来说是一本很好的学习资料。无论是对于想深入了解张量分析的数学爱好者,还是需要应用张量分析的科学研究者和工程师,这本书都是一本值得阅读和参考的著作。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值