【matplotlib教程】绘图样式,文本线型、轴刻度

一、简介

对于每对x,y参数,都有一个可选的第三个参数,它是表示图的颜色和线条类型的格式字符串。格式字符串的字母和符号来自MATLAB,您将颜色字符串与线条样式字符串连接在一起。默认格式字符串是“ b-”,这是一条蓝色实线。例如,要用红色圆圈绘制以上内容,我们可以:

plt.plot([1, 2, 3, 4], [1, 4, 9, 16], 'ro')
plt.axis([0, 6, 0, 20])
plt.show()

在这里插入图片描述

axis()上面示例中的 命令采用一个列表并指定轴的视口:[xmin, xmax, ymin, ymax]

二、控制线特性

线条具有许多可以设置的属性:线宽,破折号样式,抗锯齿等;见matplotlib.lines.Line2D。有几种设置线属性的方法:

1、使用关键字args:

plt.plot(x, y, linewidth=2.0)

2、使用Line2D实例的setter方法。

plot返回Line2D对象列表;例如line1, line2 = plot(x1, y1, x2, y2)。在下面的代码中,我们假设只有一行,所以返回的列表的长度为1。我们使用line, 来获取该列表的第一个元素:

line, = plt.plot(x, y, '-')
line.set_antialiased(False) # turn off antialiasing

3、使用setp()命令。

下面的示例使用MATLAB样式的命令在行列表上设置多个属性。setp与对象列表或单个对象透明地工作。您可以使用python关键字参数或MATLAB样式的字符串/值对:

lines = plt.plot(x1, y1, x2, y2)
# use keyword args
plt.setp(lines, color='r', linewidth=2.0)
# or MATLAB style string value pairs
plt.setp(lines, 'color', 'r', 'linewidth', 2.0)

三、画多个图形和轴

MATLAB和和pyplot具有当前图形和当前轴的概念。所有绘图命令均适用于当前轴。该函数gca()返回当前轴(一个matplotlib.axes.Axes实例),并 gcf()返回当前图形(一个matplotlib.figure.Figure实例)。通常,您不必为此担心,因为所有这些操作都是在后台进行的。下面是创建两个子图的脚本。您可以通过使用多个figure()具有递增数字的呼叫来创建多个数字 。当然,每个图形都可以包含您内心所希望的多个轴和子图:

def f(t):
    return np.exp(-t) * np.cos(2*np.pi*t)

t1 = np.arange(0.0, 5.0, 0.1)
t2 = np.arange(0.0, 5.0, 0.02)

plt.figure()
plt.subplot(211)
plt.plot(t1, f(t1), 'bo', t2, f(t2), 'k')

plt.subplot(212)
plt.plot(t2, np.cos(2*np.pi*t2), 'r--')
plt.show()

在这里插入图片描述

四、使用文本

该text()命令可用于在任意位置添加文本xlabel(),, ylabel()和title() 可用于在指示的位置添加文本( 有关更多详细示例,请参见Matplotlib图中的Text)。

import matplotlib.pyplot as plt
import numpy as np

mu, sigma = 100, 15
x = mu + sigma * np.random.randn(10000)

# the histogram of the data
n, bins, patches = plt.hist(x, 50, density=1, facecolor='g', alpha=0.75)


plt.xlabel('Smarts')
plt.ylabel('Probability')
plt.title('Histogram of IQ')
plt.text(60, .025, r'$\mu=100,\ \sigma=15$')
plt.axis([40, 160, 0, 0.03])
plt.grid(True)
plt.show()

plt.show()

在这里插入图片描述
在文本中使用数学表达式

matplotlib在任何文本表达式中接受TeX方程表达式。例如写表达式σi=15\sigma_i=15 在标题中,您可以编写一个带有美元符号的TeX表达式:

plt.title(r'$\sigma_i=15$')

注释文字

text()上面基本命令的使用将文本放置在轴上的任意位置。文本的常见用法是注释绘图的某些功能,并且该 annotate()方法提供了帮助程序功能以简化注释。在注释中,有两点需要考虑:由参数表示的要注释xy的位置和text的位置xytext。这两个参数都是元组。(x, y)

import matplotlib.pyplot as plt
import numpy as np

ax = plt.subplot(111)

t = np.arange(0.0, 5.0, 0.01)
s = np.cos(2*np.pi*t)
line, = plt.plot(t, s, lw=2)

plt.annotate('local max', xy=(2, 1), xytext=(3, 1.5),
             arrowprops=dict(facecolor='black', shrink=0.05),
             )

plt.ylim(-2, 2)
plt.grid()

plt.show()

在这里插入图片描述

五、对数轴和其他非线性轴

matplotlib.pyplot不仅支持线性轴刻度,还支持对数和对数刻度。如果数据跨多个数量级,则通常使用此方法。更改轴的比例很容易:

plt.xscale('log'

下面显示了四个图的示例,这些图的y轴数据相同且比例不同。

from matplotlib.ticker import NullFormatter  # useful for `logit` scale

# Fixing random state for reproducibility
np.random.seed(19680801)

# make up some data in the open interval (0, 1)
y = np.random.normal(loc=0.5, scale=0.4, size=1000)
y = y[(y > 0) & (y < 1)]
y.sort()
x = np.arange(len(y))

# plot with various axes scales
plt.figure()

# linear
plt.subplot(221)
plt.plot(x, y)
plt.yscale('linear')
plt.title('linear')
plt.grid(True)


# log
plt.subplot(222)
plt.plot(x, y)
plt.yscale('log')
plt.title('log')
plt.grid(True)


# symmetric log
plt.subplot(223)
plt.plot(x, y - y.mean())
plt.yscale('symlog', linthreshy=0.01)
plt.title('symlog')
plt.grid(True)

# logit
plt.subplot(224)
plt.plot(x, y)
plt.yscale('logit')
plt.title('logit')
plt.grid(True)
# Adjust the subplot layout, because the logit one may take more space
# than usual, due to y-tick labels like "1 - 10^{-3}"
plt.subplots_adjust(top=0.92, bottom=0.08, left=0.10, right=0.95, hspace=0.25,
                    wspace=0.35)

plt.show()

在这里插入图片描述


如果觉得ok,点个赞,点个关注,也欢迎给个打赏支持一下编者的工作
发布了69 篇原创文章 · 获赞 689 · 访问量 15万+
App 阅读领勋章
微信扫码 下载APP
阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 技术黑板 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览