【四足机器人那些事】雅各比矩阵

本文介绍了四足机器人的雅各比矩阵概念,通过多元形式的导数展示了雅各比矩阵的计算过程。同时,针对两轴机械臂,详细阐述了两种求解关节角速度与末端执行器线速度关系的方法,包括迭代法和利用正运动学模型计算雅各比矩阵。
摘要由CSDN通过智能技术生成

一、雅各比

雅各比矩阵式多元形式的导数,假设有以下3个函数,每个函数有6个自变量:

y 1 = f 1 ( x 1 , x 2 , x 3 ) y 2 = f 2 ( x 1 , x 2 , x 3 ) y 3 = f 3 ( x 1 , x 2 , x 3 ) \begin{aligned} &y_1 = f_1(x_1, x_2, x_3) \\ \\ &y_2 = f_2(x_1, x_2, x_3) \\\\ &y_3 = f_3(x_1, x_2, x_3) \end{aligned} y1=f1(x1,x2,x3)y2=f2(x1,x2,x3)y3=f3(x1,x2,x3)

写成矩阵的形式:

Y = F ( x ) Y = F(x) Y=F(x)

其中:

Y = [ y 1 y 2 y 3 ] X = [ x 1 x 2 x 3 ] Y = \begin{bmatrix}y_1\\y_2\\y_3\end{bmatrix} \quad X = \begin{bmatrix}x_1\\x_2\\x_3\end{bmatrix} Y=y1y2y3X=x1x2x3

计算 y i y_i yi的微分与 x i x_i xi的微分的函数:

δ y 1 = ∂ f 1 ∂ x 1 δ x 1 + ∂ f 1 ∂ x 2 δ x 2 + ∂ f 1 ∂ x 3 δ x 3 δ y 2 = ∂ f 2 ∂ x 1 δ x 1 + ∂ f 2 ∂ x 2 δ x 2 + ∂ f 2 ∂ x 3 δ x 3 δ y 3 = ∂ f 3 ∂ x 1 δ x 1 + ∂ f 3 ∂ x 2 δ x 2 + ∂ f 3 ∂ x 3 δ x 3 \begin{aligned} &\delta y_1 = \frac{\partial f_1}{\partial x_1}\delta x_1 +\frac{\partial f_1}{\partial x_2}\delta x_2 + \frac{\partial f_1}{\partial x_3}\delta x_3 \\\\ &\delta y_2 = \frac{\partial f_2}{\partial x_1}\delta x_1 +\frac{\partial f_2}{\partial x_2}\delta x_2 + \frac{\partial f_2}{\partial x_3}\delta x_3 \\\\ &\delta y_3 = \frac{\partial f_3}{\partial x_1}\delta x_1 +\frac{\partial f_3}{\partial x_2}\delta x_2 + \frac{\partial f_3}{\partial x_3}\delta x_3 \\\\ \end{aligned} δy</

  • 1
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
### 回答1: 雅各矩阵(Jacobian Matrix)是一个数学工具,由一组多元函数构成,常用来描述函数在不同自变量取值下的变化率。在matlab,可以使用symbolic toolbox进行雅各矩阵的求解。 使用Matlab求解雅各矩阵的步骤如下: (1)输入需要求解雅各矩阵的函数 (2)使用symbolic toolbox的diff函数对每个自变量进行偏导数求解 (3)将偏导数组合成一个矩阵即为雅各矩阵 例如,对于一个由两个自变量x和y构成的函数f(x,y) = x^2 + y^3+2xy,我们可以使用Matlab求解其雅各矩阵。 首先,我们需要定义该多元函数: syms x y f = x^2+y^3+2*x*y 然后,对每个自变量进行偏导数求解: df_dx = diff(f,x) df_dy = diff(f,y) 最后,将偏导数组合成一个矩阵,得到该函数在x和y处的雅各矩阵: J = [df_dx, df_dy] 其,J的第一行表示f在x处的偏导数,J的第二行表示f在y处的偏导数。通过求解雅各矩阵,我们可以获得函数在不同自变量取值下的变化率,有助于进行函数的优化、最大化与最小化等问题的求解。 ### 回答2: 雅各矩阵(Jacobian Matrix)是一个重要的线性代数工具,广泛应用于数学、工程和科学领域。在Matlab雅各矩阵也是一个非常重要的概念。 在Matlab雅各矩阵可以使用“jacobian”函数进行计算。这个函数需要两个参数,第一个参数是一个n维向量的函数,第二个参数是一个n维向量,表示求导的点。函数返回一个n×n的矩阵,即为雅各矩阵雅各矩阵在Matlab的应用非常广泛,特别是在求解最优化问题、非线性方程组和微分方程组等方面。例如,在优化问题,我们可以通过雅各矩阵来计算优化目标函数的梯度,从而帮助我们找到最优解。在非线性方程组的求解,我们可以使用雅各矩阵来计算牛顿法矩阵逆,从而更快地收敛到解。在微分方程组的求解,我们可以使用雅各矩阵来计算控制函数和状态变量之间的关系,从而优化控制器参数。 因此,掌握Matlab雅各矩阵是非常重要的,可以帮助我们更高效地解决各种实际问题。 ### 回答3: 雅各矩阵是一种由Jacques Salomon Hadamard引入的协方差矩阵的推广形式,它是一种方阵,其每个元素是原矩阵对应位置的偏导数。在matlab,可以使用“jacobian”函数来计算雅各矩阵雅各矩阵在计算机视觉、机器人、控制系统等领域的应用非常广泛。例如,在机器人路径规划,需要计算末端执行器的速度和加速度,那么可以利用雅各矩阵将关节速度转换为末端速度,并将关节加速度转换为末端加速度。 除此之外,在最优化问题雅各矩阵也非常重要。例如,如果要优化一个非线性函数,则可以使用牛顿法进行迭代求解,每次迭代都需要计算函数的梯度和海森矩阵,而雅各矩阵就是海森矩阵的特例,可以用于优化算法。 总的来说,雅各矩阵是一种十分有用的数学工具,可以用于求解各种计算问题,尤其在数学和工程领域具有广泛的应用前景。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

我是。

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值