这是一个刚体动力学中的问题,内容参考Abhinandan Jain的Robot and Multibody Dynamics
空间惯量( The Spatial Inertia)
单个刚体的动能可表示为以下体积积分:
E = 1 2 ∫ Ω v T ( x ) ρ ( x ) v ( x ) d v ( x ) E = \frac{1}{2}\int _\Omega v^T(x)\rho (x)v(x)d \textrm{v}(x) E=21∫ΩvT(x)ρ(x)v(x)dv(x)
式中, v ( x ) v(x) v(x)为点x的线速度, ρ ( x ) \rho(x) ρ(x)为在x点处的质量密度, d v ( x ) d \textrm{v}(x) dv(x)为包含点x的体积微分。
现在定义刚体上一点 k k k,让 v ( K ) v(K) v(K)表示该点的空间速度。 刚体上任何其他点x的空间速度 v ( X ) v(X) v(X)与 v ( K ) v(K) v(K)有关:
v ( x ) = R v ( k ) v(x) = Rv(k) v(x)=Rv(k)
其中, R R R为 k k k点到x点的变换矩阵。此时,刚体的动能可以表示为:
E = 1 2 v T ( k ) { R ∫ Ω ρ ( x ) R d v ( x ) } v ( k ) = 1 2 v T ( k ) M ( k ) v ( k ) \begin{matrix} E &=& \frac{1}{2} v^T(k) \begin{Bmatrix} R\int _\Omega \rho (x)Rd \textrm{v}(x) \end{Bmatrix}v(k) \\ \\ &=& \frac{1}{2}v^T(k)M(k)v(k) \end{matrix} E==21vT(k){ R∫Ωρ(x)Rdv(x)}v(k)21vT(k)M(k)v(k)
这里的 M ( k ) M(k) M(k)就是点k的空间惯性,可以写成如下形式:
M ( k ) = ( J ( k ) m p ( k ) − m p ( k ) m I 3 ) ∈ R 6 × 6 M(k)=\begin{pmatrix} J(k) & mp(k)\\ -mp(k) & mI_3 \end{pmatrix} \in \mathbb{R}^{6\times6} M(k)=