【数学问题2】空间惯量 The Spatial Inertia

本文探讨了刚体动力学中的空间惯量概念,介绍了如何从质量、质心和转动惯量计算空间惯量,并提供了一个在C++中计算空间惯量的实现过程,涉及矩阵变换和向量操作。
摘要由CSDN通过智能技术生成

这是一个刚体动力学中的问题,内容参考Abhinandan Jain的Robot and Multibody Dynamics

空间惯量( The Spatial Inertia)

单个刚体的动能可表示为以下体积积分:

E = 1 2 ∫ Ω v T ( x ) ρ ( x ) v ( x ) d v ( x ) E = \frac{1}{2}\int _\Omega v^T(x)\rho (x)v(x)d \textrm{v}(x) E=21ΩvT(x)ρ(x)v(x)dv(x)

式中, v ( x ) v(x) v(x)为点x的线速度, ρ ( x ) \rho(x) ρ(x)为在x点处的质量密度, d v ( x ) d \textrm{v}(x) dv(x)为包含点x的体积微分。

现在定义刚体上一点 k k k,让 v ( K ) v(K) v(K)表示该点的空间速度。 刚体上任何其他点x的空间速度 v ( X ) v(X) v(X) v ( K ) v(K) v(K)有关:

v ( x ) = R v ( k ) v(x) = Rv(k) v(x)=Rv(k)

其中, R R R k k k点到x点的变换矩阵。此时,刚体的动能可以表示为:

E = 1 2 v T ( k ) { R ∫ Ω ρ ( x ) R d v ( x ) } v ( k ) = 1 2 v T ( k ) M ( k ) v ( k ) \begin{matrix} E &=& \frac{1}{2} v^T(k) \begin{Bmatrix} R\int _\Omega \rho (x)Rd \textrm{v}(x) \end{Bmatrix}v(k) \\ \\ &=& \frac{1}{2}v^T(k)M(k)v(k) \end{matrix} E==21vT(k){ RΩρ(x)Rdv(x)}v(k)21vT(k)M(k)v(k)

这里的 M ( k ) M(k) M(k)就是点k的空间惯性,可以写成如下形式:

M ( k ) = ( J ( k ) m p ( k ) − m p ( k ) m I 3 ) ∈ R 6 × 6 M(k)=\begin{pmatrix} J(k) & mp(k)\\ -mp(k) & mI_3 \end{pmatrix} \in \mathbb{R}^{6\times6} M(k)=

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

我是。

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值