机器学习模型进行预测和回测

这段代码是为了并行地处理多个 CSV 文件,并使用机器学习模型进行预测和回测。主要涉及以下步骤:

  1. 初始化环境与设置

    • 引入必要的库,如 ray 用于并行计算,pandas 用于数据处理,tqdm 用于进度条显示等。
    • 设置一些路径,用于保存结果、图像、模型等。
    • 定义一些处理特征、数据预处理的函数。
  2. 并行处理函数 csv_predict

    • 使用 ray.remotecsv_predict 函数并行化。
    • 在每个函数中,加载训练好的模型,并对新的 CSV 文件进行预测和回测。
  3. 具体步骤

    • 读取 CSV 文件:读取并处理每个 CSV 文件,确保数据格式正确。
    • 数据预处理:包括特征计算、标准化等。
    • 构建验证数据集:将处理后的数据转换为模型可接受的格式。
    • 预测与回测:使用模型对数据进行预测,并根据预测结果进行回测计算,模拟交易策略。
  4. 结果保存

    • 根据回测结果,将交易数据保存到不同的文件夹中。
    • 以不同的策略和条件,将结果分门别类保存。

代码解读

import ray

# 验证集数据处理
a = []
sum_dam_data = []

# 定义并行处理函数
@ray.remote    
def csv_predict(csv_path):
    # 创建和训练模型参数
    nhits_params = {
   
        'sampling_stride': 8,
        'eval_metrics': ["mse", "mae"],
        'batch_size': 32,
        'max_epochs': 100,
        'patience': 10
    }
    rnn_params = {
   
        'sampling_stride': 8,
        'eval_metrics': ["mse", "mae"],
        'batch_size': 32,
        'max_epochs': 100,
        'patience': 10,
    }
    mlp_params = {
   
        'sampling_stride': 8,
        'eval_metrics': ["mse", "mae"],
        'batch_size': 32,
        'max_epochs': 100,
        'patience': 10,
        'use_bn': True,
    }

    # 加载训练好的加权集成预测模型
    reg = WeightingEnsembleForecaster(
        in_chunk_len=64,
        out_chunk_len=1,
        skip_chunk_len=0,
        estimators=[(NHiTSModel, nhits_params), (RNNBlockRegressor, rnn_params), (MLPRegressor, mlp_params)]
    )
    reg = reg
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值