激光SLAM各开源算法的优缺点对比

激光SLAM(simultaneous localization and mapping)是同时定位与地图构建技术的简称,它利用激光雷达准确测量障碍点的角度与距离,实现无须预先布置场景的定位与建图。激光SLAM开源算法有多种,每种算法都有其独特的优缺点。以下是一些常见的激光SLAM开源算法及其优缺点概述:

一、基于滤波器的激光SLAM算法

  1. EKF-SLAM(扩展卡尔曼滤波SLAM)

    • 优点:使用最大似然算法进行数据关联。
    • 缺点:计算量复杂,鲁棒性较差,构建的地图是特征地图而非栅格地图,无法应用于导航避障。
  2. FastSLAM

    • 优点:将SLAM问题分解成机器人定位问题和基于已知机器人位姿的构图问题,是最早能够实时输出栅格地图的激光SLAM方案。
    • 缺点
      • 对于大尺度环境,若里程计误差较大,需要较多粒子来表示机器人位姿的后验概率分布,严重消耗内存。
      • 由于重采样的随机性,随着重采样次数增多,粒子多样性散失,粒子耗散问题会严重影响地图的构建。
  3. Gmapping

    • 优点:以FastSLAM方案为基本原理,在较小的环境中能实现较好的建图效果,是目前使用最为广泛的2D激光SLAM方案。
    • 缺点
      • 在里程计模型传播时,对所有的粒子同等对待,优的粒子在传播时可能变成差的粒子,粒子退化问题严重。
      • 非常依赖于里程计信息,构建的地图也取决于里程计的精度。
  4. Optimal RBPF

    • 优点:在里程计模型传播时,一个粒子每次传播会得到N个粒子,在N个粒子里面选择最优粒子作为此次的真实传播,大大减少最优粒子退化为噪声很大的粒子情况。
    • 缺点:信息未详细列出。

二、基于图优化的激光SLAM算法

  1. Karto SLAM

    • 优点:认识到了系统稀疏性,在一定程度上替代了基于滤波器的激光SLAM方案。
    • 缺点
      • 采用局部子图匹配之前都要构建子图,耗费时间较长。
      • 若采用全局匹配方法,则在搜索范围大的时候速度会变慢。
  2. Cartographer

    • 优点
      • 是谷歌开源的一个支持ROS的室内SLAM库,持续更新维护。
      • 代码工程化,多态、继承、封装完善,提供了方便的接口,便于接入多种传感器。
      • 支持2D和3D激光雷达的输入,实现机器人定位,并构建栅格地图。
    • 缺点
      • 没有对闭环检测结果进行验证,在几何对称的环境中容易引起错误的闭环。
      • 3D部分更像是2D的扩展,即用2D的思路去做3D的事情。
  3. Hector-SLAM

    • 优点
      • 利用高斯牛顿方法解决前端扫描匹配问题。
      • 不需要里程计数据,里程计信息通过激光雷达数据估算出来。
    • 缺点
      • 对初值敏感,难以处理闭环问题。
      • 在ROS仿真环境中,若机器人速度过快尤其是在强旋转时,会发生漂移现象。
      • 对传感器的测量频率要求较高。

三、其他激光SLAM算法

  1. LOAM

    • 优点
      • 张吉等人在RSS期刊上发表的关于三维激光传感器的SLAM算法。
      • 提出了新颖的特征提取方式,即角点和面点。
      • 融合了scan to scan(里程计部分)和map to map(建图部分)的思想。
    • 缺点
      • 没有回环检测模块。
      • 不能处理大规模的旋转变换。
      • 计算时间复杂度较高,基于三维空间中的位姿进行优化。
  2. Lego-LOAM

    • 优点
      • 以LOAM为框架衍生出的新算法,主要在于轻量级和地面优化。
      • 对LOAM进行改进,使其能在TX2上实时运行。
    • 缺点
      • 依赖地面,对于无人机等难以确定地面的场景不适用。
  3. LIO-SAM

    • 优点
      • Lego-LOAM的扩展版本,添加了IMU预积分因子和GPS因子。
      • 使用了关键帧进行匹配,提高了计算效率。
    • 缺点:信息未给出。
  4. hdl_graph_slam

    • 优点
      • 能同时融合GPS、IMU和Lidar三种传感器。
      • 代码架构简单,适合对整个SLAM架构的学习。
      • 平面检测和平面约束是其特色。
    • 缺点
      • 不适合有坡道的场景建图。
  5. S-LOAM

    • 优点
      • 旨在解决森林环境中的SLAM问题,提出了一种基于位姿优化的语义特征。
    缺点:信息未详细列出。
    1. 除了之前提到的Cartographer、hdl_graph_slam、LOAM、Lego-LOAM、LIO-SAM、S-LOAM等开源激光SLAM算法外,确实还存在其他多种开源的激光SLAM算法。以下是一些额外的开源激光SLAM算法及其简要介绍 :

    2. FAST-LIO2
      • 特点:这是一种快速且紧耦合的稀疏直接激光雷达惯性里程计,它结合了激光雷达(Lidar)和惯性测量单元(IMU)的数据,实现了高精度的定位和建图。
      • 优点:计算效率高,能够在资源受限的平台上实时运行。
    3. LVI-SAM
      • 特点:LVI-SAM是一种紧耦合的激光雷达-视觉-惯性系统,它融合了激光雷达、相机和惯性测量单元的数据,提供了鲁棒且准确的定位和建图能力。
      • 优点:能够在复杂环境中稳定运行,适用于多种传感器配置。
    4. 这些开源的激光SLAM算法各有特色,适用于不同的应用场景和需求。在选择算法时,需要根据具体的应用场景、传感器配置和计算资源等因素进行综合考虑。同时,也需要注意算法的更新和维护情况,以确保其稳定性和可靠性。

    5. FAST-Livo
      • 特点:这是另一种结合了激光雷达、IMU和相机的紧耦合里程计,它采用了稀疏直接法来处理图像和激光雷达数据。
      • 优点:能够在低计算成本下实现高精度的定位和建图。
    6. R3LIVE
      • 特点:R3LIVE是一种鲁棒的实时激光雷达惯性视觉里程计,它结合了激光雷达、惯性测量单元和可选的视觉信息,提供了强大的定位和建图能力。
      • 优点:对光照变化、动态物体和复杂场景具有鲁棒性。
    7. ImMesh
      • 特点:ImMesh是一种基于隐式移动最小二乘(Implicit Moving Least Squares)的激光SLAM算法,它专注于构建高质量的网格地图。
      • 优点:能够生成平滑且准确的网格地图,适用于需要高精度地图表示的应用场景。
    8. livox-loam 和 Livox-Mapping
      • 特点:这两种算法都是针对Livox激光雷达设计的,提供了针对该类型激光雷达的优化定位和建图能力。
      • 优点:能够充分利用Livox激光雷达的特性,实现高精度的定位和建图。
    9. LIO-Livox
      • 特点:这是另一种针对Livox激光雷达设计的紧耦合激光雷达惯性里程计。
      • 优点:结合了激光雷达和惯性测量单元的数据,提供了高精度的定位和建图能力。
    10. Point-LIO
      • 特点:Point-LIO是一种基于点云的激光雷达惯性里程计,它利用点云数据来实现定位和建图。
      • 优点:能够处理大规模的点云数据,适用于需要高精度地图的应用场景。
    11. PV-LIO&VoxelMap
      • 特点:PV-LIO结合了体素地图和激光雷达惯性里程计,提供了高精度的定位和建图能力。
      • 优点:能够构建高质量的体素地图,适用于需要精确地图表示的应用场景。
<think>好的,用户想找关于SLAM算法的优秀实现方案及其GitHub链接。首先,我需要回忆一下SLAM相关的经典算法和近年来的研究进展。比如,ORB-SLAM系列是比较知名的,还有LIO-SAM这样的激光雷达SLAM方案。另外,MIT在2017年有一篇论文《SLAM with Objects using a Nonparametric Pose Graph》可能相关,用户提供的引用[^1]就是这个,里面应该提到了他们的GitHub仓库,需要确认是否有公开代码。 接下来,用户可能需要不同传感器类型的SLAM实现,比如视觉SLAM激光雷达SLAM,或者多传感器融合的方案。比如ORB-SLAM3支持单目、双目和RGB-D相机,而LIO-SAM结合了激光雷达和IMU。这些项目的GitHub仓库通常会有较多的星标,说明受欢迎程度。 然后,还要考虑是否包括深度学习结合的SLAM方法,比如CNN-SLAM或者DROID-SLAM,这些可能更适合动态场景或需要更高鲁棒性的情况。同时,用户提供的引用[^2]和[^3]虽然主要关于卷积网络和多任务学习,但可能间接相关,不过可能不是直接回答用户问题的重点。 另外,需要检查每个提到的仓库是否活跃,是否有良好的文档和社区支持。比如,VINS-Fusion和RTAB-Map都是持续维护的项目,适合实际应用。同时,可以推荐一些工具库如g2o,用于位姿图优化,这在SLAM系统中很关键。 用户可能还需要知道如何评估这些实现的优缺点,比如ORB-SLAM3在精度上表现好,但对计算资源要求高;Hector SLAM适合低功耗平台但依赖高精度激光雷达。因此,在回答中需要简要说明每个项目的适用场景。 最后,确保所有推荐的GitHub链接都是正确的,并且引用对应的论文。比如,MIT的论文引用[^1]对应的仓库是否真实存在,可能需要快速检查一下。另外,注意用户提到的引用中有没有其他相关项目,但根据问题,主要关注SLAM的实现,所以集中在引用和相关知名项目上。</think>以下整理当前主流SLAM算法的优秀开源实现方案及其GitHub资源,按技术路线分类说明: ### 一、特征点法SLAM 1. **ORB-SLAM3**(2020) - 支持单目/双目/RGB-D相机、IMU与多地图系统 - 创新闭环检测与地图复用机制 - GitHub: [https://github.com/UZ-SLAMLab/ORB_SLAM3](https://github.com/UZ-SLAMLab/ORB_SLAM3) - 论文引用: 《ORB-SLAM3: An Accurate Open-Source Library for Visual, Visual-Inertial and Multi-Map SLAM》[^4] 2. **OpenVSLAM**(2019) - 模块化设计的通用视觉SLAM框架 - 支持鱼眼/球面/全景相机 - GitHub: [https://github.com/xdspacelab/openvslam](https://github.com/xdspacelab/openvslam) ### 二、激光SLAM 3. **LIO-SAM**(2020) - 紧耦合激光雷达-IMU融合方案 - 基于因子图优化的实时建图 - GitHub: [https://github.com/TixiaoShan/LIO-SAM](https://github.com/TixiaoShan/LIO-SAM) 4. **Hector SLAM**(2013) - 首个无需里程计信息的2D激光SLAM - 采用高斯牛顿优化的扫描匹配 - GitHub: [https://github.com/tu-darmstadt-ros-pkg/hector_slam](https://github.com/tu-darmstadt-ros-pkg/hector_slam) ### 三、语义SLAM 5. **MIT-SPONGE**(2017) - 基于非参数位姿图的物体级SLAM - 实现环境语义理解与物体关联 - GitHub: [https://github.com/MIT-SPARK/SPONGE](https://github.com/MIT-SPARK/SPONGE) 6. **CubeSLAM**(2019) - 单目3D物体检测与SLAM联合优化 - GitHub: [https://github.com/shichaoy/cube_slam](https://github.com/shichaoy/cube_slam) ### 四、多传感器融合方案 7. **VINS-Fusion**(2019) - 视觉-惯性-GNSS多源融合 - 支持多传感器时空标定 - GitHub: [https://github.com/HKUST-Aerial-Robotics/VINS-Fusion](https://github.com/HKUST-Aerial-Robotics/VINS-Fusion) 8. **RTAB-Map**(2022) - 基于RGB-D/Lidar的SLAM - 支持三维重建与全局闭环检测 - GitHub: [https://github.com/introlab/rtabmap](https://github.com/introlab/rtabmap) ### 五、深度学习增强方案 9. **CNN-SLAM**(2017) - 结合CNN单目深度估计 - GitHub: [https://github.com/iromu/CnnSlam](https://github.com/iromu/CnnSlam) 10. **DROID-SLAM**(2021) - 端到端可微分SLAM框架 - GitHub: [https://github.com/princeton-vl/DROID-SLAM](https://github.com/princeton-vl/DROID-SLAM) ### 关键工具库 - **g2o**:位姿图优化库 [https://github.com/RainerKuemmerle/g2o](https://github.com/RainerKuemmerle/g2o) - **GTSAM**:因子图优化框架 [https://github.com/borglab/gtsam](https://github.com/borglab/gtsam)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值