笔记-先进PID控制MATLAB仿真

本文介绍了模糊规则和神经网络在PID控制中的作用,如模糊规则用于PID参数整定和未知项补偿,神经网络则用于控制律逼近和系统优化。此外,讨论了基于RBF神经网络的PID整定方法和迭代学习控制在确定PID参数上的应用。文章还提到了自适应控制和鲁棒控制作为增强PID性能的策略,并列举了多种PID参数整定方法,包括模糊规则、神经网络、遗传算法和迭代学习。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

先进PID控制MATLAB仿真(第3版)

第八章《模糊PID控制和专家PID控制》

模糊规则在PID控制中的作用:一是利用模糊规则调节实现PID的整定;二是利用模糊系统的万能逼近理论逼近被控对象的未知项,实现控制补偿,提升PID控制的性能;三是把控制律模糊化,当成未知项直接利用模糊规则进行逼近。(二与三都是基于模糊规则的万能逼近特性)

基于自适应模糊补偿的PD控制: 在利用模糊规则对被控对象的未知项进行逼近时,需要适当选取模糊规则参数,使逼近误差尽可能的小,才能保证控制系统的稳定性。(对应二)

基于模糊规则表的PD控制: 将跟踪误差和误差变化量作为模糊规则的输入,控制输入作为规则的输出,根据经验构造模糊规则表,可实现无需模型信息的控制。(对应三,这个勉强算得上是PD控制吧)

模糊自适应整定PID控制(专家PID控制器): 以误差 e e e和误差变化 e ˙ \dot e e˙作为输入,利用模糊规则对PID控制器的3个参数进行在线修改,来满足系统对PID参数自整定的要求。首先将专家长期实践积累的经验知识用控制规则模型化,然后运用推理便可以对PID参数实现最佳调整。(对应一)

专家PID控制: 基于受控对象和控制规律的各种知识,无需知道被控对象的精确模型,利用专家经验来设计PID参数。(和“一”相似)

第九章《神经网络PID控制》

与上一章类似,神经网络和模糊规则原理都具有万能逼近特性,因此神经网络在PID控制中的作用:一是利用神经网络调节实现PID的整定;二是利用神经网络逼近被控对象的未知项,实现控制补偿,提高PID控制的性能;三是直接把控制律当成未知项,利用神经网络直接进行逼近。(“三”就不能算作PID控制器了)

基于RBF神经网络整定的PID控制: 设定神经网络整定指标,基于梯度下降法,调整PID控制器的三参数,使神经网络整定指标最小。(对应“一”)

此处神经网络参数或控制参数都是按经验选取或试凑的,只能保证闭环系统在局部得到优化,不能保证闭环系统的稳定性。如果参数选择不当,闭环系统控制很容易发散。

基于单神经元网络的PID智能控制: 通过对加权系数的调整来实现自适应、自组织功能,权系数的调整是按某种学习规则实现的。也就是说该控制算法由控制算法和学习算法组成。常见的学习算法(学习规则)有:无监督Hebb学习规则、有监督的Delta学习规则、有监督的Hebb学习规则。(对应“一”的变形)

基于自适应神经网络补偿的PD控制: 基于RBF神经网络的万能逼近特性,实现对被控对象未知项的自适应逼近。(对应“二”)

第十二章《迭代学习PID控制》

可以先通过迭代学习的仿真来确定PID控制器的初始参数,再通过模糊规则、神经网络或遗传算法进行参数整定。

PID参数整定方法

第八章的基于模糊规则的PID参数整定

第九章的基于神经网络的PID参数整定

第十章的基于遗传算法的PID参数整定

第十二章的迭代学习PID控制也是一种参数整定方法

先进PID整定方法:设定优化性能指标,将控制问题转换为优化问题,利用优化算法进行PID的参数整定。优化算法包括不限于粒子群算法、遗传算法、蚁群算法等等。

常规PID整定方法:基于响应曲线法的PID整定、基于Ziegler-Nichols的频域响应PID整定、基于频域分析的PD整定、基于相位裕度整定的PI控制、基于极点配置的稳定PD控制、基于临界比例度法的PID整定、基于优化函数的PID整定、基于NCD(Nonlinear Control Design)优化的PID整定、基于NCD与优化函数结合的PID整定。

PID控制方法优缺点

优点:算法简单、无需建模

缺点:参数难以整定、不能保证稳定性

自适应控制(Adaptive Control):能修正自己特性以适应对象和扰动动态特性变化的控制方法。

鲁棒控制(Robust Control):控制系统能在一定的参数摄动下,维持某些性能的特性。

参考文献

  1. 刘金琨. 先进PID控制MATLAB仿真(第3版)[M]. 电子工业出版社, 2011.
目 录 前 言 第 1 章 数字 PID 控制………………………………………………………………(1) 1.1PID 控制原理 ……………………………………………………………………(1) 1.2 连续系统的模拟 PID 仿真…………………………………………………………(2) 1.3 数字 PID 控制……………………………………………………………………(3) 1.3.1 位置式 PID 控制算法……………………………………………………………(3) 1.3.2 连续系统的数字 PID 控制仿真…………………………………………………(4) 1.3.3 离散系统的数字 PID 控制仿真…………………………………………………(8) 1.3.4 增量式 PID 控制算法及仿真…………………………………………………(14) 1.3.5 积分分离 PID 控制算法及仿真…………………………………………………(16) 1.3.6 抗积分饱和 PID 控制算法及仿真………………………………………………(20) 1.3.7 T型积分 PID 控制算法………………………………………………………(24) 1.3.8 变速积分 PID 算法及仿真……………………………………………………(24) 1.3.9 带滤波器的 PID 控制仿真……………………………………………………(28) 1.3.10 不完全微分 PID 控制算法及仿真……………………………………………(33) 1.3.11 微分先行 PID 控制算法及仿真………………………………………………(37) 1.3.12 带死区的 PID 控制算法及仿真………………………………………………(42) 1.3.13 基于前馈补偿的 PID 控制算法及仿真………………………………………(45) 1.3.14 步进式 PID 控制算法及仿真…………………………………………………(49) 第 2 章 常用的数字 PID 控制系统………………………………………………(53) 2.1 单回路 PID 控制系统……………………………………………………………(53) 2.2 串级 PID 控制……………………………………………………………………(53) 2.2.1 串级 PID 控制原理……………………………………………………………(53) 2.2.2 仿真程序及分析………………………………………………………………(54) 2.3 纯滞后系统的大林控制算法……………………………………………………(57) 2.3.1 大林控制算法原理……………………………………………………………(57) 2.3.2 仿真程序及分析………………………………………………………………(57) 2.4 纯滞后系统的 Smith 控制算法…………………………………………………(59) 2.4.1 连续 Smith 预估控制…………………………………………………………(59) 2.4.2 仿真程序及分析………………………………………………………………(61) 2.4.3 数字 Smith 预估控制…………………………………………………………(63) 2.4.4 仿真程序及分析………………………………………………………………(64) 第 3 章 专家 PID 控制和模糊 PID 控制…………………………………………(68) 3.1 专家 PID 控制…………………………………………………………………(68) 3.1.1 专家 PID 控制原理……………………………………………………………(68) 3.1.2 仿真程序及分析………………………………………………………………(69) 3.2 模糊自适应整定 PID 控制………………………………………………………(72) 3.2.1 模糊自适应整定 PID 控制原理………………………………………………(72) 3.2.2 仿真程序及分析………………………………………………………………(76) 3.3 模糊免疫 PID 控制算法…………………………………………………………(87) 3.3.1 模糊免疫 PID 控制算法原理…………………………………………………(88) 3.3.2 仿真程序及分析………………………………………………………………(89) 第 4 章 神经 PID 控制……………………………………………………………(94) 4.1 基于单神经元网络的 PID 智能控制………………………………………………(94) 4.2 基于 BP 神经网络整定的 PID 控制………………………………………………(103) 4.3 基于 RBF 神经网络整定的 PID 控制……………………………………………(112) 4.4 基于 RBF 神经网络辨识的单神经元 PID 模型参考自适应控制……………………(120)4.5 基于 CMAC 神经网络与 PID 的并行控制…………………………………………(126) 4.6 基于 SIMULINK 的 CMAC 与 PID 并行控制…………………………………………(133) 第 5 章 基于遗传算法整定的 PID 控制…………………………………………(139) 遗传算法基本原理…………………………………………………………(139) 5.2 遗传算法的优化设计………………………………………………………(140) 5.3 遗传算法求函数极大值………………………………………………………(140) 5.4 基于遗传算法的 PID 整定……………………………………………………(145) 5.5 基于遗传算法摩擦模型参数辨识的 PID 控制……………………………………(157) 第 6 章 PID 解耦控制……………………………………………………………(165) 6.1 PID 多变量解耦控制……………………………………………………………(165) 6.2 单神经元 PID 解耦控制………………………………………………………(168) 6.3 基于 DRNN 神经网络整定的 PID 解耦控制………………………………………(173) ……………(174)6.3.3 仿真程序及分析……………………………………………………………(176)第 7 章 几种先进PID控制方法……………………………………………(185) 7.1 基于干扰观测器的 PID 控制……………………………………………………(185) 7.2 非线性系统的 PID 鲁棒控制……………………………………………………(195) 7.3 一类非线性 PID 控制器设计……………………………………………………(199) 7.4 基于重复控制补偿的高精度 PID 控制…………………………………………(208) 7.5 基于零相差前馈补偿的高精度 PID 控制………………………………………(214) 第 8 章 灰色 PID 控制……………………………………………………………(229) 8.1 灰色控制原理…………………………………………………………………(229) 8.2 灰色 PID 控制…………………………………………………………………(231) 8.3 灰色 PID 的位置跟踪……………………………………………………………(247)- 第 9 章 非线性 PID 控制…………………………………………………………(261) 9.1 伺服系统低速摩擦条件下 PID 控制……………………………………………(261) 9.2 伺服系统的三环 PID 控制……………………………………………………(269) 9.3 二质量伺服系统的 PID 控制……………………………………………………(276) 第 10 章 PID实时控制的语言设计及应用……………………………(283) 10.1 M语言的转化………………………………………………………(283) 10.2 基于的三轴飞行模拟转台伺服系统实时控制…………………(285)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Leweslyh

一块去征服星辰大海吧!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值