SIFT特征以其稳定的存在,较高的区分度推进了诸多领域的发展,比如识别和配准。上一篇文章,解析了SIFT特征提取的第一步高斯金字塔的构建,并详细分析了高斯金字塔以及差分高斯金字塔如何完成一个连续的尺度空间的构建。构建高斯金字塔不是目的,目的是如何利用高斯金字塔找到极值点。
图像的尺度空间就是:二维高斯函数与原始图像卷积运算后的结果,
尺度空间的表达式:
lowe在论文中阐述了为什么使用差分高斯金字塔:
1)差分高斯图像可以直接由高斯图像相减获得,简单高效
2) 差分高斯函数是尺度规范化的高斯拉普拉斯函数的近似,而高斯拉普拉斯函数的极大值和极小值点是一种非常稳定的特征点(与梯度特征、Hessian特征和Harris角点相比)
有了这些基础,我们就可以放开手脚从差分高斯金字塔中找点了。
特征点的确定主要包括两个过程:确定潜在特征点,精确确定特征点的位置和去除不稳定特征点。
确定潜在特征点
高斯拉普拉斯函数的极大值和极小值点是一种非常稳定的特征点,因此我们从差分高斯金字塔中寻找这些潜在特征点。差分高斯金字塔是一个三维空间(平面图像二维,尺度一维),因此我们在三维空间中在寻找极大值点和极小值点。具体方法是比较当前特征点的灰度值和其他26个点的灰度值的大小,这26个点包括:当前尺度下该点的8邻域以及前一尺度和后一尺度下与该点最近的9个点(9*2+8=26)

尺度空间中的极值点已经确定出来了,下面有两个问题需要解决:
(1)这些点是最终我们确定的SIFT特征点集的超集,该超集里包含许多“间谍”-----不稳定的特征点,因此必须去掉这些不稳定的特征点。这些不稳定的特征点主要包含两类:低对比度的点(对噪声敏感)和边缘点。
(2)这一步骤中极值点的坐标还是离散的整数值,如何精确确定特征点的位置。
极值点精确定位
而我们找的的极值点是在高斯差分之后所确定下来的,那么其是属于离散空间上的点,不一定是真正意义上的极值点。
我们需用用到一条曲线来进行拟合。
离散转换为连续,我们会想到泰勒展开式:
则极值点为:
去除边缘影响
到这一步,得到的极值点是比较精确了,但不够准确。有些极值点不是我们想要的,当中就有一大部分是边缘区域产生的极值点。因为物体的边缘轮廓在灰度图中,存在着灰度值的突变,这样的点在计算中就被“误以为”是特征值。
仔细分析,边缘区域在纵向上灰度值突变很大,但是横向上的变化就很小了。好比你用黑笔在白纸上水平画一条线段。垂直方向看,黑色线与白色区域的突变很大。但是水平方向看时,黑色线上某一点的水平临近点仍然是黑点,突变程度非常小。
由于这一特殊性质,我们想到了Hessian矩阵,海塞矩阵是用来求曲率的,可以以函数的二阶偏导为元素,构成一个2x2的矩阵H:
具体可参见Harris角点检测算法。