
桓峰基因的教程不但教您怎么使用,还会定期分析一些相关的文章,学会教程只是基础,但是如果把分析结果整合到文章里面才是目的,觉得我们这些教程还不错,并且您按照我们的教程分析出来不错的结果发了文章记得告知我们,并在文章中感谢一下我们哦!
公司英文名称:Kyoho Gene Technology (Beijing) Co.,Ltd.
这期分享一篇2018年8月份发表在 Nature Medicine (IF:82.9),作者基于 scRNA-seq 研究肺肿瘤微环境中基质细胞的表型塑造。该文章使用桓峰基因公众号里面生信分享教程即可实现,有需要类似思路的老师可以联系我们!

摘 要
癌细胞嵌入肿瘤微环境(TME)中,这是一个复杂的基质细胞生态系统。我们在单细胞分辨率下展示了人类肺肿瘤中52,698个细胞的TME转录组数据,并在独立样本中进行了验证,其中40,250个细胞进行了测序。通过与匹配的非恶性肺样本进行比较,我们揭示了一个高度复杂的TME,深刻地塑造了基质细胞。鉴定了52种基质细胞亚型,包括迄今为止被认为是同质的细胞类型中的新亚群,以及其异质性背后的转录因子。例如,我们发现成纤维细胞表达不同的胶原集合,内皮细胞下调免疫细胞归巢和基因与已建立的免疫检查点转录本共调控,并与T细胞活性相关。通过在1572例患者的大量RNA测序数据中评估这些细胞亚型的标记基因,说明了这些细胞亚型如何与生存相关,而选择的标记物的免疫组织化学验证了它们是独立的细胞实体。因此,通过提供基质细胞类型的综合分析,并通过表征其表型和共选行为,提供了对肺癌生物学的更深入了解,这将有助于推进肺癌的诊断和治疗。
生信分析流程
相关数据集选择:
5个患者 scRNA-seq 数据, TCGA-LUAD and TCGA-LUSC
基因集选择
单细胞分析结果找到的Marker
生信分析方法:
我们从文章的分析流程中提取所有的分析内容,整理出来就 11个分析条目,每个条目都包括分析的内容,这些分析构成了整个文章,本文属于单细胞测序生信分析类文章,下面我们就看看哪些分析可以利用桓峰基因公众号的教程来实现,点击分析条码就会跳转到对应公众号的教程,跟着教程做,您也能发轻松发高分,如下:
7. SCENIC分析(RcisTarget, AUCell, GRNboost)
研究结果
1. 52,698个来自肺肿瘤和远端非恶性肺样本的单细胞综述。
a, 样品来源摘要。根据全球慢性阻塞性肺疾病分期倡议对COPD进行分类。
b,这里描绘的52,698个细胞的tSNE。
c,每个面板上定义的细胞类型的标记基因的表达。
d, 52个基质细胞亚簇和12个癌细胞亚簇。


2. 内皮细胞簇。
a, 1592个内皮细胞的tSNE图。
b, tSNE图颜色编码的表达(灰色到红色)标记基因在血液,淋巴,肿瘤和正常内皮细胞。
c,肺(n = 108)、LUSC (n = 501)和LUAD (n = 513) TCGA样本中29个正常内皮细胞标记基因和7个肿瘤内皮细胞标记基因的平均表达。
d,肿瘤和正常内皮细胞通过GSVA评分的每个细胞的通路活性差异。
e,内皮细胞的tSNE图,根据每个细胞中检测到的转录本数量进行颜色编码。
f,小提琴图显示参与血管生成和免疫激活的选定基因的平滑表达分布,按正常或肿瘤内皮细胞簇分层(绿色和蓝色,n = 323, 246, 311和307内皮细胞,分别为簇1,5,3和4)。
g,曲线下面积(AUC)的热图,转录因子对1,187个内皮细胞中的每一个细胞的表达调节,使用SCENIC估计。如图所示是肿瘤和正常内皮细胞之间表达调节估计差异最大的五种转录因子。
h,内皮细胞的tSNE图,颜色编码为(上)MAF, FOSL1和TEAD1的表达(左至右),颜色编码为(下)这些转录因子的估计调节活性的AUC,对应于其靶基因的表达调节程度。


3. 肺和肺肿瘤中的成纤维细胞聚集。
a, 1465个成纤维细胞的tSNE图。
b, tSNE图颜色编码的表达(灰色到红色)标记基因的集群。
c,肺(n = 108)、LUSC (n = 501)或LUAD (n = 513) TCGA样本中各簇成纤维细胞标记基因的平均表达量。
d,小提琴图显示了在成纤维细胞簇中编码胶原的选定基因的平滑表达分布(n = 315、266、219、195、175和155个成纤维细胞分别用于簇1、2、4、5、6和7)。
e,不同成纤维细胞簇间GSVA评分的每个细胞的通路活性差异。
f,每个成纤维细胞簇转录因子表达调节的AUC评分T值的热图,使用SCENIC估计。
g,成纤维细胞的tSNE图,颜色编码为(左)HOXB2和MEF2C的表达(分别为顶部和底部),这些转录因子的估计调节活性的AUC(中)和指示途径的GSVA估计(右)。

4. 肺和肺肿瘤中的b细胞和髓样细胞团。
a, 5603个b细胞样细胞的tSNE图。
b, tSNE图,颜色编码的表达(灰色到红色)标记基因的细胞类型。
c,肺(n = 108)、LUSC (n = 501)或LUAD (n = 513) TCGA样本中各簇b细胞样细胞标记基因的平均表达量。
d,从肺或肺肿瘤中分离的滤泡B细胞(簇1和簇2)通过GSVA评分的每个细胞的通路活性差异(n = 205和2470个来自5名患者的滤泡B细胞)。
e, 9,756个髓样细胞的tSNE图。
f, tSNE图,颜色编码的表达(灰色到红色)标记基因的细胞类型。
g,肺(n = 108)、LUSC (n = 501)或LUAD (n = 513) TCGA样本中各簇髓样细胞标记基因的平均表达量。
h,使用GSVA对肺分离的巨噬细胞和肺肿瘤分离的巨噬细胞之间每个细胞的通路活性进行评分的差异(n = 3,873或4,201个巨噬细胞)。
i, 8074个巨噬细胞中转录因子(调节因子活性)表达调节的AUC评分热图,使用SCENIC估计。
j,巨噬细胞的tSNE图,颜色编码为(上)IRF9和JUND的表达(左和右),这些转录因子的估计调节活性的AUC,以及包含这些转录因子靶基因子集的途径的活性,使用GSVA估计。



5. 肺和肺肿瘤中的T细胞簇。
a, 24,911个T细胞的tSNE图。
b, tSNE图。
c,肺(n = 108)、LUSC (n = 501)或LUAD (n = 513) TCGA样本中各簇T细胞标记基因的平均表达量。
d,使用GSVA对从肺或肺肿瘤分离的T细胞之间每个细胞的通路活性进行评分的差异。
e,与d相同,但CD8 T细胞簇5、2、4和8 (n分别为421和2,704,549和4,106,10和3,244和111和895,来自5例患者的非恶性和肿瘤组织)。
f,小提琴图显示参与T细胞活性和免疫检查点的选定基因的平滑表达分布,按CD8 T细胞簇分层(n = 3,125, 4,655, 3,254和1,006 CD8 T细胞簇5,2,4和8,分别来自5名患者)。
g, CD8 T细胞活性之间的Spearman相关性(n = 8,915),通过平均颗粒酶表达(GZMA, GZMB和GZMH)和1,704个CD8 T细胞特异性基因的表达(与所有其他细胞相比过表达3倍)来测量。


6. 肿瘤样本中基质细胞的分布及其作为患者生存指标的作用。
a,每个肿瘤来源样本的癌细胞分数和缺氧标记基因表达。
b,线性模型的T值,显示肿瘤核心或边缘间质细胞团的富集。
c, LUAD (n = 501)或LUSC (n = 513)样本中标记基因的平均表达量,使用TCGA中的RNA-seq进行表征。
d, 1027例LUAD样本(左)或545例LUSC样本(右)中标记基因表达(连续)与患者生存之间的关系。
e, LUAD或LUSC患者的Kaplan-Meier生存曲线(n =1027或545例患者)。


Reference:
1. Lambrechts, D., Wauters, E., Boeckx, B. et al. Phenotype molding of stromal cells in the lung tumor microenvironment. Nat Med 24, 1277–1289 (2018).
号外号外,桓峰基因单细胞生信分析免费培训课程即将开始,快来报名吧!
桓峰基因,铸造成功的您!
未来桓峰基因公众号将不间断的推出单细胞系列生信分析教程,
敬请期待!!
桓峰基因官网正式上线,请大家多多关注,还有很多不足之处,大家多多指正!http://www.kyohogene.com/
桓峰基因和投必得合作,文章润色优惠85折,需要文章润色的老师可以直接到网站输入领取桓峰基因专属优惠券码:KYOHOGENE,然后上传,付款时选择桓峰基因优惠券即可享受85折优惠哦!https://www.topeditsci.com/

861

被折叠的 条评论
为什么被折叠?



