本文主要介绍Apollo内部关于车辆速度曲线的规划,主要是涉及了几个阶段的主要任务表述
1.Speed_bounds_prior_decider:
首先,将障碍物的轨迹映射到s-t graph,随后计算出障碍物的轨迹(prior过程,障碍物在速度方面不存在decision,因此此次计算轨迹是withoutdecision),并将其放置boundaries集合中,随后设置速度最大限制(沿规划好路径),最后,st_graph_data保存boundaries,speed_limit等.
2.DP_ST_SPEED_OPTIMIZER:
根据上述的boundaries,进行计算启发式速度曲线搜索,得到最优轨迹;
3.SPEED_DECIDER:
根据上述的speed曲线,来初步判断对障碍物的decision,其中行人需要特别处理,设置相应的决策行为;
4.SPEED_BOUNDS_FINAL_DECIDER:
重新计算障碍物stboundary,然后根据障碍物的decision,确定速度的边界;
5.PIECEWISE_JERK_SPEED_OPTIMIZER
基于osqp进行速度曲线的数值优化计算,得出最优曲线.
                  
                  
                  
                  
本文详细介绍了Apollo自动驾驶系统中车辆速度曲线的规划流程,包括Speed_bounds_prior_decider的速度边界设定,DP_ST_SPEED_OPTIMIZER的最优轨迹计算,SPEED_DECIDER的障碍物决策,SPEED_BOUNDS_FINAL_DECIDER的速度边界调整,以及PIECEWISE_JERK_SPEED_OPTIMIZER的速度曲线优化。
          
      
          
                
                
                
                
              
                
                
                
                
                
              
                
                
              
            
                  
					4757
					
被折叠的  条评论
		 为什么被折叠?
		 
		 
		
    
  
    
  
            


            