SLAM因子图构建笔记

因子图简介

  最近在读了Joan Sola所写的Course on SLAM中有关因子图部分的介绍后,发现其中有关于因子图构建的思路觉得很有意思,因此在这里记录一下。

DBN网络

  首先简单地介绍一下如何将一个SLAM问题建立成为一个DBN(Dynamic Bayes Network 动态贝叶斯网络)。DBN是一种统计模型,它可以用一个有向无环图来表示随机变量以及它们之间的依赖关系。它们之间的条件依赖可以用用箭头表示。比如 B ⟶ A B\longrightarrow A BA代表A在B条件下的概率,无环则表示不会出现诸如A依赖于B,B依赖于C,C又依赖于A的情况。在SLAM问题中,我们有四种类型的随机变量:
43266.png)
其中运动模型表示为:
x i = f i ( x i − 1 , u i ) + w i x_i=f_i(x_{i-1},u_i)+w_i xi=fi(xi1,ui)+wi用子图表示 x i x_i xi在给定 x i − 1 x_{i-1} xi1以及 u i u_i ui时的条件概率即为:
在这里插入图片描述
同样,测量模型可以表示为:
z k = h k ( x i , m ) + v k z_k=h_k(x_i,m)+v_k zk=hk(xi,m)+vk用子图表示为:
在这里插入图片描述
m表示传感器对周围环境的测量值,在SLAM问题中经常表示为路标点的位置(landmark),因此在传感器姿态为 x i x_i xi时测量得到的路标点 l j l_j lj的测量模型为: z k = h k ( x i , l j ) + v k z_k=h_k(x_i,l_j)+v_k zk=hk(xi,lj)+vk此时子图可以表示为:
在这里插入图片描述
将所有的子图聚合在一起可以得到完成的DBN网络:
在这里插入图片描述
此时所有随机变量的联合概率写为:
P ( X , L , U , Z ) ∝ P ( X 0 ) ∏ i = 1 M P ( x i ∣ x i − 1 , u i ) ∏ k = 1 K P ( z k ∣ x i k , l j k ) P(X,L,U,Z)\propto P(X_0)\prod_{i=1}^{M}P(x_i|x_{i-1},u_i)\prod_{k=1}^{K}P(z_k|x_{i_k},l_{j_k}) P(X,L,U,Z)P(X0)i=1MP(xixi1,ui)k=1KP(zkxik,ljk)其中 P ( x 0 ) P(x_0) P(x0)表示初始时的先验概率,我们最终要优化的目标函数和状态量是:
{ X ∗ , L ∗ } = arg ⁡ max ⁡ X , L P ( X 0 ) ∏ i = 1 M P ( x i ∣ x i − 1 , u i ) ∏ k = 1 K P ( z k ∣ x i k , l j k ) \{X^*,L^*\}=\arg\max_{X,L} P(X_0)\prod_{i=1}^{M}P(x_i|x_{i-1},u_i)\prod_{k=1}^{K}P(z_k|x_{i_k},l_{j_k}) {X,L}=argX,LmaxP(X0)i=1MP(xixi1,ui)k=1KP(zkxik,ljk)

SLAM转化为因子图

  联合概率问题可以转化表示成 M + K M+K M+K个因子组成的图,每一个因子由测量值(可以是控制量 U U U也可以是观察量 Z Z Z)产生,并且连接在不同的节点(位姿或者路标点或者两者都有)两端。所以一个因子图通常由两个节点组成:变量节点(variable)该节点由我们需要求解的变量组成,比如位姿或者路标点的位置,以及因子(factor),表示两个节点之间的约束关系。

在这里插入图片描述
已知运动和测量模型为:
在这里插入图片描述
因此每一个因子的条件概率写为:
在这里插入图片描述
我们可以将上边的条件概率(i.e factor)表示为更加紧凑的形式,令:
e k ( x i k − 1 , x i k ) = f i k ( x i k − 1 , u i k ) − x i k (1) e_k(x_{{i_k}-1},x_{i_k})=f_{i_k}(x_{{i_k}-1},u_{i_k})-x_{i_k}\tag{1} ek(xik1,xik)=fik(xik1,uik)xik(1)
e k ( x i k , l j k ) = h k ( x i k , l j k ) − z k (2) e_k(x_{i_k},l_{j_k})=h_k(x_{i_k},l_{j_k})-z_k\tag{2} ek(xik,ljk)=hk(xik,ljk)zk(2)
此时所有的因子可以写成一个统一的形式:
ϕ k = exp ⁡ ( − 1 2 e k ⊤ Ω k e k ) \phi_k=\exp(-\frac{1}{2}e_k^\top\Omega_ke_k) ϕk=exp(21ekΩkek)
这表明,只要我们可以从第k个测量值与状态量 i k i_k ik j k j_k jk里边计算得到误差项 e k e_k ek
e k ( x i k , x j k , z k ) e_k(x_{i_k},x_{j_k},z_k) ek(xik,xjk,zk)
那么该测量值具体是控制变量 U U U还是传感器的测量值 L L L就不重要了,换句话说,控制变量 U U U和测量值 L L L都可以作为测量值 Z Z Z构建因子。 K K K个测量值就有 K K K个因子。(注:这里的 K K K和上边表示路标点数量的 K K K我猜测应该不是一个 K K K,这里的 K K K表示控制变量和路标点数量的总和,而上边的K仅表示路标点的数量)
  现在我们的待估计量为:
x = [ x 1 , . . . , x N ] ⊤ \mathbf{x}=[\mathbf{x}_1,...,\mathbf{x}_N]^{\top} x=[x1,...,xN]
x i = { X i , L i } , i ∈ 1 , 2 , . . . , N \mathbf{x}_i=\{X_i,L_i\},i\in1,2,...,N xi={Xi,Li},i1,2,...,N
测量值为:
z = [ z 1 , . . . , z K ] ⊤ \mathbf{z}=[\mathbf{z}_1,...,\mathbf{z}_K]^{\top} z=[z1,...,zK]
z j = { U j , Z j } , j ∈ 1 , 2 , . . . , K \mathbf{z}_j=\{U_j,Z_j\},j\in1,2,...,K zj={Uj,Zj},j1,2,...,K
此时的联合概率为:
P ( x , z ) ∝ ∏ i = 1 K ϕ k ∝ ∏ i = 1 K exp ⁡ ( − 1 2 e k ⊤ Ω k e k ) P(\mathbf{x},\mathbf{z})\propto\prod_{i=1}^{K}\phi_k\propto\prod_{i=1}^{K}\exp(-\frac{1}{2}\mathbf{e}_k^{\top}\mathbf{\Omega}_k\mathbf{e}_k) P(x,z)i=1Kϕki=1Kexp(21ekΩkek)
对该联合概率取负对数可以将 exp ⁡ ( ⋅ ) \exp(·) exp()消掉,得到:
x o p t = arg max ⁡ x ∑ k = 1 K e k ( x i , x j ) ⊤ Ω k e k ( x i , x j ) \mathbf{x}_{opt}=\argmax_{\mathbf{x}}\sum_{k=1}^{K}\mathbf{e}_k(\mathbf{x}_i,\mathbf{x}_j)^\top\mathbf{\Omega}_k\mathbf{e}_k(\mathbf{x}_i,\mathbf{x}_j) xopt=xargmaxk=1Kek(xi,xj)Ωkek(xi,xj)

有关于运动误差因子的构建技巧

从上边的推导中,当给定我们一个运动向量 u i \mathbf{u}_i ui,我们可以利用运动模型构建运动误差为:
e = f ( x i − 1 , u i ) − x i \mathbf{e}=f(\mathbf{x}_{i-1},\mathbf{u}_{i})-\mathbf{x}_i e=f(xi1,ui)xi但是这样构建误差是有一个前提假设的,那就是高斯噪声 w i \mathbf{w}_i wi在函数 f ( ⋅ ) f(·) f()之外。即:
x i = f x ( x i − 1 , u i ) + w i , w i ∼ N ( 0 , Ω ) (3) \mathbf{x}_i=f_x(\mathbf{x}_{i-1},\mathbf{u}_i)+\mathbf{w}_i,\mathbf{w}_i\sim\mathcal{N}(0,\mathbf{\Omega})\tag{3} xi=fx(xi1,ui)+wi,wiN(0,Ω)(3)
但是显示情况中,我们更常见的却是如下的运动模型:
x i = f x ( x i − 1 , u i − w i ) , w i ∼ N ( 0 , Ω ) (4) \mathbf{x}_i=f_x(\mathbf{x}_{i-1},\mathbf{u}_i-\mathbf{w}_i),\mathbf{w}_i\sim\mathcal{N}(0,\mathbf{\Omega})\tag{4} xi=fx(xi1,uiwi),wiN(0,Ω)(4)在这种情况下,我们常常做的是通过 f ( ⋅ ) f(·) f()关于 w i \mathbf{w}_i wi J a c o b i a n Jacobian Jacobian将原函数线性化,即:
x i ≈ f x ( x i − 1 , u i ) + ∂ f ∂ w w i (5) \mathbf{x}_i\approx f_x(\mathbf{x}_{i-1},\mathbf{u}_i)+ \frac{\partial f}{\partial \mathbf{w}} \mathbf{w}_i\tag{5} xifx(xi1,ui)+wfwi(5)
但是这样做非常容易发生由于 J a c o b i a n Jacobian Jacobian不满秩而导致的协方差矩阵 Ω \mathbf{\Omega} Ω为奇异矩阵的错误(无法求逆),为了解决这个问题,我们通常避免 J a c o b i a n Jacobian Jacobian的计算,即可以将误差项表示为如下的形式:
u i = f − 1 ( x i , x i − 1 ) + w i \mathbf{u}_i=f^{-1}(\mathbf{x}_i,\mathbf{x}_{i-1})+\mathbf{w}_i ui=f1(xi,xi1)+wi
e = f − 1 ( x i , x i − 1 ) − u i \mathbf{e}=f^{-1}(\mathbf{x}_i,\mathbf{x}_{i-1})-\mathbf{u}_i e=f1(xi,xi1)ui
该形式和之前测量值的误差表达式形式一致:
e = h ( x i , l j ) − z \mathbf{e}=h(\mathbf{x}_{i},\mathbf{l}_{j})-\mathbf{z} e=h(xi,lj)z
但是在一些特殊的传感器上(比如IMU), f − 1 ( ⋅ ) f^{-1}(·) f1()可能不那么容易求得,此时我们就需要将测量值通过一个函数变形为: z = z ( u ) \mathbf{z}=z(\mathbf{u}) z=z(u),此时由控制变量得到的测量值写为:
z i = g ( x i , x i − 1 ) + w i \mathbf{z}_i=g(\mathbf{x}_i,\mathbf{x}_{i-1})+\mathbf{w}_i zi=g(xi,xi1)+wi
误差项变为:
e = g ( x i , x i − 1 ) − z i \mathbf{e}=g(\mathbf{x}_i,\mathbf{x}_{i-1})-\mathbf{z}_i e=g(xi,xi1)zi
由于IMU的测量值有6个自由度,因此导致 f ( ⋅ ) f(·) f()的非线性效应十分严重,逆函数不容易求出,一个解决方法就是利用观测的差值,即先将IMU的读数进行数次预积分,以降低 f ( ⋅ ) f(·) f()的维度,这样 f ( ⋅ ) f(·) f()的逆函数就比较容易求得了。

  • 8
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值