【路径规划】局部路径规划算法——曲线插值法(含python实现 | c++实现)

参考资料

1. 算法简介

  • 曲线插值的方法是按照车辆在某些特定条件(安全、快速、高效)下, 进行路径的曲线拟合,常见的有多项式曲线、双圆弧段曲线、正弦函数曲线、贝塞尔曲线、 B样条曲线等。

  • 曲线插值法的核心思想就是基于预先构造的曲线类型,根据车辆期望达到的状态(比如要求车辆到达某点的速度和加速度为期望值),将此期望值作为边界条件代入曲线类型进行方程求解,获得曲线的相关系数(简单地说就是待定系数法!)。

  • 曲线所有的相关系数一旦确定,轨迹规划随之完成。

2. 算法精讲

2.1 多项式曲线

下面以多项式曲线为例讲解曲线插值法轨迹规划。

多项式曲线分为三次多项式曲线五次多项式曲线七次多项式曲线

  • 针对三次多项式曲线,最多能确定每一个期望点的两个维度的期望状态,一般来说就是位置和速度

{ x ( t ) = a 0 + a 1 t + a 2 t 2 + a 3 t 3 y ( t ) = b 0 + b 1 t + b 2 t 2 + b 3 t 3 (1) \tag{1} \left\{\begin{array}{l} x(t)=a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3} \\ y(t)=b_{0}+b_{1} t+b_{2} t^{2}+b_{3} t^{3} \end{array}\right. {x(t)=a0+a1t+a2t2+a3t3y(t)=b0+b1t+b2t2+b3t3(1)

  • 针对五次多项式曲线,最多能确定每一个期望点的三个维度的期望状态,一般来说就是位置、速度、加速度

{ x ( t ) = a 0 + a 1 t + a 2 t 2 + a 3 t 3 + a 4 t 4 + a 5 t 5 y ( t ) = b 0 + b 1 t + b 2 t 2 + b 3 t 3 + b 4 t 4 + b 5 t 5 (2) \tag{2} \left\{\begin{array}{l} x(t)=a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3}+a_{4} t^{4}+a_{5} t^{5} \\ y(t)=b_{0}+b_{1} t+b_{2} t^{2}+b_{3} t^{3}+b_{4} t^{4}+b_{5} t^{5} \end{array}\right. {x(t)=a0+a1t+a2t2+a3t3+a4t4+a5t5y(t)=b0+b1t+b2t2+b3t3+b4t4+b5t5(2)

  • 针对七次多项式曲线,最多能确定每一个期望点的四个维度的期望状态,一般来说就是位置、速度、 加速度、加加速度(加加速度称为jerk,加加加速度称为snap,无人机轨迹规划中有用到snap

{ x ( t ) = a 0 + a 1 t + a 2 t 2 + a 3 t 3 + a 4 t 4 + a 5 t 5 + a 6 t 6 + a 7 t 7 y ( t ) = b 0 + b 1 t + b 2 t 2 + b 3 t 3 + b 4 t 4 + b 5 t 5 + b 6 t 6 + b 7 t 7 (3) \tag{3} \left\{\begin{array}{l} x(t)=a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3}+a_{4} t^{4}+a_{5} t^{5}+a_{6} t^{6}+a_{7} t^{7} \\ y(t)=b_{0}+b_{1} t+b_{2} t^{2}+b_{3} t^{3}+b_{4} t^{4}+b_{5} t^{5}+b_{6} t^{6}+b_{7} t^{7} \end{array}\right. {x(t)=a0+a1t+a2t2+a3t3+a4t4+a5t5+a6t6+a7t7y(t)=b0+b1t+b2t2+b3t3+b4t4+b5t5+b6t6+b7t7(3)

2.2 示例——五次多项式曲线

以五次多项式曲线为例讲解曲线揷值法轨迹规划。

t 0 t_0 t0为初始时间,位置、速度、加速度均已知,显然 x 和 y x和y xy方向分别有以下三个方程:

  • 位置
    { x ( t 0 ) = a 0 + a 1 t 0 + a 2 t 0 2 + a 3 t 0 3 + a 4 t 0 4 + a 5 t 0 5 y ( t 0 ) = b 0 + b 1 t 0 + b 2 t 0 2 + b 3 t 0 3 + b 4 t 0 4 + b 5 t 0 5 (4) \tag{4} \left\{\begin{array}{l}x\left(t_{0}\right)=a_{0}+a_{1} t_{0}+a_{2} t_{0}^{2}+a_{3} t_{0}^{3}+a_{4} t_{0}^{4}+a_{5} t_{0}^{5} \\ y\left(t_{0}\right)=b_{0}+b_{1} t_{0}+b_{2} t_{0}^{2}+b_{3} t_{0}^{3}+b_{4} t_{0}^{4}+b_{5} t_{0}^{5}\end{array} \quad\right. {x(t0)=a0+a1t0+a2t02+a3t03+a4t04+a5t05y(t0)=b0+b1t0+b2t02+b3t03+b4t04+b5t05(4)
  • 速度
    { x ′ ( t 0 ) = a 1 + 2 t 0 a 2 + 3 t 0 2 a 3 + 4 t 0 3 a 4 + 5 t 0 4 a 5 y ′ ( t 0 ) = b 1 + 2 t 0 b 2 + 3 t 0 2 b 3 + 4 t 0 3 b 4 + 5 t 0 4 b 5 (5) \tag{5} \left\{\begin{array}{l}x^{\prime}\left(t_{0}\right)=a_{1}+2 t_{0} a_{2}+3 t_{0}{ }^{2} a_{3}+4 t_{0}{ }^{3} a_{4}+5 t_{0}{ }^{4} a_{5} \\ y^{\prime}\left(t_{0}\right)=b_{1}+2 t_{0} b_{2}+3 t_{0}{ }^{2} b_{3}+4 t_{0}{ }^{3} b_{4}+5 t_{0}{ }^{4} b_{5}\end{array} \quad\right. {x(t0)=a1+2t0a2+3t02a3+4t03a4+5t04a5y(t0)=b1+2t0b2+3t02b3+4t03b4+5t04b5(5)
  • 加速度
    { x ′ ′ ( t 0 ) = 2 a 2 + 6 t 0 a 3 + 12 t 0 2 a 4 + 20 t 0 3 a 5 y ′ ′ ( t 0 ) = 2 b 2 + 6 t 0 b 3 + 12 t 0 2 b 4 + 20 t 0 3 b 5 (6) \tag{6} \left\{\begin{array}{l}x^{\prime \prime}\left(t_{0}\right)=2 a_{2}+6 t_{0} a_{3}+12 t_{0}{ }^{2} a_{4}+20 t_{0}{ }^{3} a_{5} \\ y^{\prime \prime}\left(t_{0}\right)=2 b_{2}+6 t_{0} b_{3}+12 t_{0}{ }^{2} b_{4}+20 t_{0}{ }^{3} b_{5}\end{array} \quad\right. {x(t0)=2a2+6t0a3+12t02a4+20t03a5y(t0)=2b2+6t0b3+12t02b4+20t03b5(6)

定义换道终点时间为 t 1 t_1 t1 ,横纵向(即 x , y x,y x,y方向)均有期望的位置、速度、 加速度,又分别可以得到以下三个方程:

  • 位置
    { x ( t 1 ) = a 0 + a 1 t 1 + a 2 t 1 2 + a 3 t 1 3 + a 4 t 1 4 + a 5 t 1 5 y ( t 1 ) = b 0 + b 1 t 1 + b 2 t 1 2 + b 3 t 1 3 + b 4 t 1 4 + b 5 t 1 5 (7) \tag{7} \left\{\begin{array}{l}x\left(t_{1}\right)=a_{0}+a_{1} t_{1}+a_{2} t_{1}^{2}+a_{3} t_{1}^{3}+a_{4} t_{1}^{4}+a_{5} t_{1}^{5} \\ y\left(t_{1}\right)=b_{0}+b_{1} t_{1}+b_{2} t_{1}^{2}+b_{3} t_{1}^{3}+b_{4} t_{1}^{4}+b_{5} t_{1}^{5}\end{array} \quad\right. {x(t1)=a0+a1t1+a2t12+a3t13+a4t14+a5t15y(t1)=b0+b1t1+b2t12+b3t13+b4t14+b5t15(7)
  • 速度
    { x ′ ( t 1 ) = a 1 + 2 t 1 a 2 + 3 t 1 2 a 3 + 4 t 1 3 a 4 + 5 t 1 4 a 5 y ′ ( t 1 ) = b 1 + 2 t 1 b 2 + 3 t 1 2 b 3 + 4 t 1 3 b 4 + 5 t 1 4 b 5 (8) \tag{8} \left\{\begin{array}{l}x^{\prime}\left(t_{1}\right)=a_{1}+2 t_{1} a_{2}+3 t_{1}{ }^{2} a_{3}+4 t_{1}{ }^{3} a_{4}+5 t_{1}{ }^{4} a_{5} \\ y^{\prime}\left(t_{1}\right)=b_{1}+2 t_{1} b_{2}+3 t_{1}{ }^{2} b_{3}+4 t_{1}{ }^{3} b_{4}+5 t_{1}{ }^{4} b_{5}\end{array} \quad\right. {x(t1)=a1+2t1a2+3t12a3+4t13a4+5t14a5y(t1)=b1+2t1b2+3t12b3+4t13b4+5t14b5(8)
  • 加速度
    { x ′ ′ ( t 1 ) = 2 a 2 + 6 t 1 a 3 + 12 t 1 2 a 4 + 20 t 1 3 a 5 y ′ ′ ( t 1 ) = 2 b 2 + 6 t 1 b 3 + 12 t 1 2 b 4 + 20 t 1 3 b 5 (9) \tag{9} \left\{\begin{array}{l}x^{\prime \prime}\left(t_{1}\right)=2 a_{2}+6 t_{1} a_{3}+12 t_{1}{ }^{2} a_{4}+20 t_{1}{ }^{3} a_{5} \\ y^{\prime \prime}\left(t_{1}\right)=2 b_{2}+6 t_{1} b_{3}+12 t_{1}{ }^{2} b_{4}+20 t_{1}{ }^{3} b_{5}\end{array} \quad\right. {x(t1)=2a2+6t1a3+12t12a4+20t13a5y(t1)=2b2+6t1b3+12t12b4+20t13b5(9)

把起末两点的横纵向方程统一用矩阵表达为:
X = [ x 0 x 0 ′ x 0 ′ ′ x 1 x 1 ′ x 1 ′ ′ ] = [ t 0 5 t 0 4 t 0 3 t 0 2 t 0 1 5 t 0 4 4 t 0 3 3 t 0 2 2 t 0 1 0 20 t 0 3 12 t 0 2 6 t 0 2 0 0 t 1 5 t 1 4 t 1 3 t 1 2 t 1 1 5 t 1 4 4 t 1 3 3 t 1 2 2 t 1 1 0 20 t 1 3 12 t 1 2 6 t 1 2 0 0 ] [ a 5 a 4 a 3 a 2 a 1 a 0 ] = T × A Y = [ y 0 y 0 ′ y 0 ′ ′ y 1 y 1 ′ y 1 ′ ′ ] = [ t 0 5 t 0 4 t 0 3 t 0 2 t 0 1 5 t 0 4 4 t 0 3 3 t 0 2 2 t 0 1 0 20 t 0 3 12 t 0 2 6 t 0 2 0 0 t 1 5 t 1 4 t 1 3 t 1 2 t 1 1 5 t 1 4 4 t 1 3 3 t 1 2 2 t 1 1 0 20 t 1 3 12 t 1 2 6 t 1 2 0 0 ] [ b 5 b 4 b 3 b 2 b 1 b 0 ] = T × B (10) \tag{10} \begin{aligned} &X=\left[\begin{array}{l} x_{0} \\ x_{0}^{\prime} \\ x_{0}^{\prime \prime} \\ x_{1} \\ x_{1}^{\prime} \\ x_{1}^{\prime \prime} \end{array}\right]=\left[\begin{array}{llllll} t_{0}{ }^{5} & t_{0}{ }^{4} & t_{0}{ }^{3} & t_{0}{ }^{2} & t_{0} & 1 \\ 5 t_{0}{ }^{4} & 4 t_{0}{ }^{3} & 3 t_{0}{ }^{2} & 2 t_{0} & 1 & 0 \\ 20 t_{0}{ }^{3} & 12 t_{0}{ }^{2} & 6 t_{0} & 2 & 0 & 0 \\ t_{1}^{5} & t_{1}{ }^{4} & t_{1}{ }^{3} & t_{1}{ }^{2} & t_{1} & 1 \\ 5 t_{1}^{4} & 4 t_{1}{ }^{3} & 3 t_{1}{ }^{2} & 2 t_{1} & 1 & 0 \\ 20 t_{1}{ }^{3} & 12 t_{1}{ }^{2} & 6 t_{1} & 2 & 0 & 0 \end{array}\right]\left[\begin{array}{l} a_{5} \\ a_{4} \\ a_{3} \\ a_{2} \\ a_{1} \\ a_{0} \end{array}\right]=T \times A\\ \\ &Y=\left[\begin{array}{l} y_{0} \\ y_{0}^{\prime} \\ y_{0}^{\prime \prime} \\ y_{1} \\ y_{1}^{\prime} \\ y_{1}^{\prime \prime} \end{array}\right]=\left[\begin{array}{llllll} t_{0}{ }^{5} & t_{0}{ }^{4} & t_{0}{ }^{3} & t_{0}{ }^{2} & t_{0} & 1 \\ 5 t_{0}{ }^{4} & 4 t_{0}{ }^{3} & 3 t_{0}{ }^{2} & 2 t_{0} & 1 & 0 \\ 20 t_{0}{ }^{3} & 12 t_{0}{ }^{2} & 6 t_{0} & 2 & 0 & 0 \\ t_{1}^{5} & t_{1}{ }^{4} & t_{1}{ }^{3} & t_{1}{ }^{2} & t_{1} & 1 \\ 5 t_{1}^{4} & 4 t_{1}{ }^{3} & 3 t_{1}{ }^{2} & 2 t_{1} & 1 & 0 \\ 20 t_{1}{ }^{3} & 12 t_{1}{ }^{2} & 6 t_{1} & 2 & 0 & 0 \end{array}\right]\left[\begin{array}{l} b_{5} \\ b_{4} \\ b_{3} \\ b_{2} \\ b_{1} \\ b_{0} \end{array}\right]=T \times B \end{aligned} X=x0x0x0x1x1x1=t055t0420t03t155t1420t13t044t0312t02t144t1312t12t033t026t0t133t126t1t022t02t122t12t010t110100100a5a4a3a2a1a0=T×AY=y0y0y0y1y1y1=t055t0420t03t155t1420t13t044t0312t02t144t1312t12t033t026t0t133t126t1t022t02t122t12t010t110100100b5b4b3b2b1b0=T×B(10)

多项式曲线的自变量为时间 t t t,故一旦求解出系数矩阵 A , B A,B A,B,即可确定曲线方程(说白了,求系数的方法就是我们初中学过的待定系数法)。曲线唯一确定后, 则曲线上每一点的位置、速度等便确定了,轨迹即可求出。曲线上每一点的导数就代表了车辆经过该点时的速度,表明多项式曲线换道轨迹规划是路径+速度的耦合结果

注意,五次多项式换道轨迹曲线特指横向位置/纵向位置是关于时间 t t t的五次多项式,而不是指纵向位置 y y y关于横向位置 x x x的五次多项式。

2.3 双圆弧段曲线

如图,对于双圆弧段换道轨迹,它由弧AC+线段CD+弧DF构成。

显然,在C点,轨迹曲率由弧AC段的定值突变为0,故为了让车辆能完全跟随轨迹, 考虑到方向盘转角是一个连续缓变过程,车辆行驶到在C点后必须速度为0, 让方向盘回正后才能继续行驶,因此无法应用于行车路径规划,而应用于泊车路径规划

3. python代码实现

下面实现五次多项式曲线插值法轨迹规划

import numpy as np
import matplotlib.pyplot as plt


if __name__=="__main__":
    # 场景定义
    # 换道场景路段与车辆相关参数的定义
    d = 3.5          # 道路标准宽度
    len_line = 30    # 直线段长度
    W = 1.75         # 车宽
    L = 4.7          # 车长

    # 车辆换道初始状态与终点期望状态
    t0 = 0
    t1 = 3
    state_t0 = np.array([0, -d/2, 5, 0, 0, 0])  # 分别表示小车的x,y; vx,vy; ax,ay
    state_t1 = np.array([20, d/2, 5, 0, 0, 0])


    """计算A和B两个系数矩阵"""
    ## 把起末两点的横纵向方程统一用矩阵表达
    X = np.concatenate((np.array([state_t0[i] for i in range(6) if i%2==0]),np.array([state_t1[i] for i in range(6) if i%2==0])))
    Y = np.concatenate((np.array([state_t0[i] for i in range(6) if i%2!=0]),np.array([state_t1[i] for i in range(6) if i%2!=0])))

    #矩阵T表示
    T = np.matrix([
        [t0 ** 5,t0 ** 4,t0 ** 3,t0 ** 2,t0,1],
        [5 * t0 ** 4,4 * t0 ** 3,3 * t0 ** 2,2 * t0,1,0],
        [20 * t0 ** 3,12 * t0 ** 2,6 * t0,1,0,0],
        [t1 ** 5,t1 ** 4,t1 ** 3,t1 ** 2,t1,1],
        [5 * t1 ** 4,4 * t1 ** 3,3 * t1 ** 2,2 * t1,1,0],
        [20 * t1 ** 3,12 * t1 ** 2,6 * t1,1,0,0]
        ])
    
    # # 解法1
    # A=np.linalg.pinv(T)@X
    # B=np.linalg.pinv(T)@Y.T
    # A=A.T
    # B=B.T

    # # 解法2
    A = np.linalg.solve(T,X)
    B = np.linalg.solve(T,Y)


    # 将时间从t0到t1离散化,获得离散时刻的轨迹坐标
    t = np.transpose((np.arange(t0,t1+0.05,0.05)))
    path = np.zeros((len(t),4)) # 1-4列分别存放x,y,vx,vy 

    for i in range(len(t)):
        # 纵向位置坐标
        path[i,0] = np.array([t[i] ** 5,t[i] ** 4,t[i] ** 3,t[i] ** 2,t[i],1]) @ A  # @符号是矩阵相乘的意思
        # 横向位置坐标
        path[i,1] = np.array([t[i] ** 5,t[i] ** 4,t[i] ** 3,t[i] ** 2,t[i],1]) @ B
        # 纵向速度
        path[i,2] = np.array([5 * t[i] ** 4,4 * t[i] ** 3,3 * t[i] ** 2,2 * t[i],1,0]) @ A
        # 横向速度
        path[i,3] = np.array([5 * t[i] ** 4,4 * t[i] ** 3,3 * t[i] ** 2,2 * t[i],1,0]) @ B


    ## 画场景示意图
    plt.figure(1)
    # 画灰色路面图
    GreyZone = np.array([[- 5,- d - 0.5],[- 5,d + 0.5],[len_line,d + 0.5],[len_line,- d - 0.5]])
    plt.fill(GreyZone[:,0],GreyZone[:,1],'gray')

    # 画小车
    plt.fill(np.array([state_t1[0],state_t1[0],state_t1[0] + L,state_t1[0] + L]),np.array([- d / 2 - W / 2,- d / 2 + W / 2,- d / 2 + W / 2,- d / 2 - W / 2]),'b')
    plt.fill(np.array([state_t0[0],state_t0[0],state_t0[0] - L,state_t0[0] - L]),np.array([- d / 2 - W / 2,- d / 2 + W / 2,- d / 2 + W / 2,- d / 2 - W / 2]),'y')
    # 画分界线
    plt.plot(np.array([- 5,len_line]),np.array([0,0]),'w--')

    plt.plot(np.array([- 5,len_line]),np.array([d,d]),'w')

    plt.plot(np.array([- 5,len_line]),np.array([- d,- d]),'w')

    # 设置坐标轴显示范围
    plt.axis('equal')

    plt.savefig("场景示意图.png")


    # 画换道轨迹
    plt.plot(path[:,0],path[:,1],'r--')
    ## 分析速度

    # 横向速度
    plt.figure(2)
    plt.plot(t,path[:,3],'k')
    plt.xlabel('time/s ')
    plt.ylabel('m/s ')
    plt.savefig("横向速度.png")

    # 纵向速度
    plt.figure(3)
    plt.plot(t,path[:,2],'k')
    plt.xlabel('time/s ')
    plt.ylabel('m/s ')
    plt.savefig("纵向速度.png")
    
    plt.show()

结果如下:

  • 换道轨迹
    在这里插入图片描述

  • 纵向速度
    在这里插入图片描述

  • 横向速度
    在这里插入图片描述

代码仓库见github

4. c++实现

由于在自动驾驶中算法实现一般使用C++,所以我也使用C++实现了相关功能,比较简单就不再做相关代码解释了。完整代码详见另一个github仓库

  • 22
    点赞
  • 101
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
ROS(机器人操作系统)是一套用于开发机器人软件的开源框架,其中包括了丰富的功能包。局部路径规划器(Local Path Planner)是ROS中的一个重要功能包。 局部路径规划器用于在机器人周围的局部环境中计算机器人的运动轨迹,以避开障碍物并达到目标位置。它基于机器人的传感器数据和地图信息,对机器人周围的环境进行感知和分析,然后根据规划算法生成合适的路径。 ROS的局部路径规划器功能包提供了多种路径规划算法实现,包括经典的Dijkstra算法、A*算法等。这些算法根据不同的需求和环境特点,可以选择合适的算法来进行路径规划局部路径规划器的核心思想是通过将机器人当前位置作为起点,在环境中搜索一个合适的路径,并考虑到障碍物的避开以及路径的平滑性。具体的规划过程可以分为以下几个步骤: 1. 获取机器人当前位置和地图信息。 2. 根据当前位置和地图,使用路径规划算法计算出一条可行的路径。 3. 对计算出的路径进行平滑处理,以便更顺利地跟随路径。 4. 将规划的路径发送给机器人的控制系统,实现路径跟踪和控制。 局部路径规划器的目标是使机器人能够安全、高效地在复杂环境中移动,避开障碍物并尽快到达目标位置。它在机器人导航任务中起到关键作用,能够帮助机器人实现自主移动和避障等功能。 总而言之,ROS的局部路径规划器是一种功能强大的工具,通过利用机器人感知和规划算法,能够为机器人提供合适的路径,使其在环境中安全地移动。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CHH3213

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值