官网参见 https://docs.opencv.org/3.4.1/d3/db4/tutorial_py_watershed.html
以前自己也了解过了,https://blog.csdn.net/weixin_42555985/article/details/93713477
这里为了确保资料完成性,就按照官网内容再了解一下。
任何一个灰度图都可以看成一个地形表面,灰度值高的部分代表为山峰,灰度值低的部分代表为山谷。你向每个山谷灌入不同颜色的水(标签)。随着水位的升高,显然来自不同山谷不同颜色的水将开始融合。为了避免这个问题,你可以在水融合的地方建立水坝。你不停的灌水,不停的加高水坝,直到所有山峰都淹没在水下。
此时,整个地形被水坝分割成一个一个部分。这就是分水岭算法背后的原理。
但是,由于图像中的噪音或者其他不规则因素,这种方法会得到过度分割结果。opencv提供了基于标记的分水岭算法(marker-based watershed algorithm),你可以指定哪些山谷的水要汇合,哪些不要。这是一种交互式图像分割。我们所要做得就是给我们所知得对象上设置不同标签。
给我们所知的前景或者对象设置一种颜色标签(或者灰度值),给我们所知的背景或者对象设置另外一种颜色标签(或者灰度值),剩余不能确定部分设置标签为0。这些标签就是我们的标记(marker),然后把它们应用于分水岭算法,标记会由我们设置的标签更新。对象的边界值为-1。
下面例子中,我们将用距离变换和分水岭算法对紧密连接在一起对象进行分割。