矩阵基础-最小二乘法

本文介绍了最小二乘法在曲线拟合中的应用,特别是在机器学习中解决多项式模型的学习问题。通过建立Vandermonde矩阵,确定n-1阶多项式的系数,并解释了当矩阵秩不足时,如何利用最小二乘解找到唯一解或最佳近似解。
摘要由CSDN通过智能技术生成

矩阵基础-最小二乘法

最小二乘曲线拟合(模型学习)问题:找到一个多项式:
p ( t ) = α 0 + α 1 t + α 2 t + . . . + α n − 1 t n − 1 p(t) = \alpha_0+ \alpha_1t +\alpha_2t+...+\alpha_{n-1}t^{n-1} p(t)=α0+α1t+α2t+...+αn1tn1
去尽量穿过以下数据集:
D = { ( t 1 , b 1 ) , ( t 2 , b 2 ) , ( t 3 , b 3 ) , . . . , ( t m , b m ) } D=\{(t_1,b_1),(t_2,b_2),(t_3,b_3),...,(t_m,b_m)\} D={ (t1,b1),(t2,b2),(t3,b3),...,(tm,b

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值